Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Sums of Independent Random Variables
- 2 The Central Limit Theorem
- 3 Infinitely Divisible Laws
- 4 Lévy Processes
- 5 Conditioning and Martingales
- 6 Some Extensions and Applications of Martingale Theory
- 7 Continuous Parameter Martingales
- 8 Gaussian Measures on a Banach Space
- 9 Convergence of Measures on a Polish Space
- 10 Wiener Measure and Partial Differential Equations
- 11 Some Classical Potential Theory
- References
- Index
8 - Gaussian Measures on a Banach Space
Published online by Cambridge University Press: 07 November 2024
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Sums of Independent Random Variables
- 2 The Central Limit Theorem
- 3 Infinitely Divisible Laws
- 4 Lévy Processes
- 5 Conditioning and Martingales
- 6 Some Extensions and Applications of Martingale Theory
- 7 Continuous Parameter Martingales
- 8 Gaussian Measures on a Banach Space
- 9 Convergence of Measures on a Polish Space
- 10 Wiener Measure and Partial Differential Equations
- 11 Some Classical Potential Theory
- References
- Index
Summary
Chapter 8 provides an introduction to Gaussian measures on a Banach space from the point of view that originated in the work of N. Wiener and was further developed by L. Gross and I. Segal. The underlying idea is that, even though it cannot fit there, the measure would like to live on the Hilbert space (the Cameron–Martin space) for which it would be the standard Gauss measure, and it is in that Hilbert space that its properties are encoded. A good deal of functional analysis is required to carry out this program, and the estimate that makes the program possible is X. Fernique’s remarkable exponential estimate. Included are derivations of M. Schilder’s large deviations theorem for Brownian motion and V. Strassen’s function space version of the law of the iterated logarithm, both of which confirm the importance of the Cameron–Martin space.
- Type
- Chapter
- Information
- Probability Theory, An Analytic View , pp. 264 - 303Publisher: Cambridge University PressPrint publication year: 2024