from Part II - Transform methods, bounds, and limits
Published online by Cambridge University Press: 05 June 2012
In this chapter we will discuss some important inequalities used in probability and statistics and their applications. They include the Cauchy–Schwarz inequality, Jensen's inequality, Markov and Chebyshev inequalities. We then discuss Chernoff's bounds, followed by an introduction to large deviation theory.
Inequalities frequently used in probability theory
Cauchy–Schwarz inequality
The Cauchy–Schwarz inequality is perhaps the most frequently used inequality in many branches of mathematics, including linear algebra, analysis, and probability theory. In engineering applications, a matched filter and correlation receiver are derived from this inequality. Since the Cauchy–Schwarz inequality holds for a general inner product space, we briefly review its properties and in particular the notion of orthogonality. We assume that the reader is familiar with the notion of field and vector space (e.g., see Birkhoff and MacLane [28] and Hoffman and Kunze [153]). Briefly stated, a field is an algebraic structure with notions of addition, subtraction, multiplication, and division, satisfying certain axioms. The most commonly used fields are the field of real numbers, the field of complex numbers, and the field of rational numbers, but there is also a finite field, known as a Galois field. Any field may be used as the scalars for a vector space.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.