Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:37:35.609Z Has data issue: false hasContentIssue false

Section 3 - Gametes

Published online by Cambridge University Press:  07 August 2023

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Kindbody Inc, New York City
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Laboratory Set-Up, Training and Daily Operation
, pp. 105 - 158
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Björndahl, L. and Kvist, U. Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reprod Biomed Online 2003; 7:440–8.CrossRefGoogle ScholarPubMed
Overstreet, J. W. et al. In-vitro capacitation of human spermatozoa after passage through a column of cervical mucus. Fertil Steril 1980; 34:604–6.CrossRefGoogle ScholarPubMed
Björndahl, L., Mohammadieh, M., Pourian, M., Söderlund, I. and Kvist, U. Contamination by seminal plasma factors during sperm selection. J Androl 2005; 26:170–3.CrossRefGoogle ScholarPubMed
World Health Organisation (WHO). WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed. (Geneva, Switzerland: WHO Press, 2021) (accessed on 3 December 2021). Available online: www.who.int/publications/i/item/9789240030787.Google Scholar
Mortimer, D. Laboratory standards in routine clinical andrology. Reprod Med Rev 1994; 3:97111.CrossRefGoogle Scholar
Mortimer, D. Practical Laboratory Andrology (Oxford: Oxford University Press, 1994).CrossRefGoogle Scholar
Aitken, R. J. and Clarkson, J. S. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 1988; 9:367–76.CrossRefGoogle ScholarPubMed
Ramasamy, R., Yagan, N. and Schlegel, P. N. Structural and functional changes to the testis after conventional versus microdissection testicular sperm extraction. Urology 2005; 65:1190–4.Google Scholar

References

Palermo, G., Joris, H., Devroey, P. and van Steirteghem, A. C. Pregnancies after intracytoplasmic sperm injection of single spermatozoan into an oocyte. Lancet 1992; 340:1718.CrossRefGoogle Scholar
Craft, I., Twirigotis, M., Bennett, V., et al. Percutaneous epididymal sperm aspiration and intracytoplasmic sperm injection in the management of infertility due to obstructive azoospermia. Fertil Steril 1995; 63:1038–42.Google Scholar
Devroey, P., Liu, J., Nagy, Z. P., et al. Pregnancies after testicular extraction (TESE) and intracytoplasmic sperm injection (ICSI) in non-obstructive azoospermia. Hum Reprod 1995; 10:1457–60.CrossRefGoogle Scholar
Bachtell, N. E., Conaghan, J. and Turek, P. J. The relative viability of human spermatozoa from the vas deferens, epidydmis and testis before and after cryopreservation. Hum Reprod 1999; 14(12):3048–51.CrossRefGoogle ScholarPubMed
Nagy, Z. P., Joris, H., Verheyen, G., Devroey, P. and Van Steirteghem, A. C. Correlation between motility of testicular spermatozoa, testicular histology and the outcomes of intracytoplasmic sperm injection. Hum Reprod 1998; 13:890–5.CrossRefGoogle ScholarPubMed
Park, Y.-S., Lee, S.-H., Sang, J. S., et al. Influence of motility on the outcome of in vitro fertilization/intracytoplasmic sperm injection with fresh vs. frozen testicular sperm from men with obstructive azoospermia. Fertil Steril 2003; 80:526–30.CrossRefGoogle ScholarPubMed
Ohlander, S., Hotaling, J., Kirshenbaum, E., Niederberger, C. and Eisenberg, M. L. Impact of fresh versus cryopreserved testicular sperm upon intracytoplasmic sperm injection pregnancy outcomes in men with azoospermia due to spermatogenic dysfunction: a meta-analysis. Fertil Steril 2014; 101:344–9.Google Scholar
Karacan, M., Alwaeely, F., Erkan, S., et al. Outcome of intracytoplasmic sperm injection cycles with fresh testicular spermatozoa obtained on the day of or the day before oocyte collection and with cryopreserved testicular sperm in patients with azoospermia. Fertil Steril 2013; 100:975–80.CrossRefGoogle ScholarPubMed
Ord, T., Marello, E., Patrizio, P., et al. The role of the laboratory in the handling of epididymal sperm for assisted reproductive technologies. Fertil Steril 1992; 57:1103–6.CrossRefGoogle ScholarPubMed
Craft, I. and Tsirigotis, M. Simplified recovery, preparation and cryopreservation of testicular spermatozoa. Hum Reprod 1995; 10:1923–7.CrossRefGoogle ScholarPubMed
Ramasamy, R., Reifsnyder, J. E., Bryson, C., et al. Role of tissue digestion and extensive sperm search after microdissection testicular sperm extraction. Fertil Steril 2011; 96(2):299302.CrossRefGoogle ScholarPubMed
Nagy, Z. P., Verheyen, G., Tournaye, H., Devroey, P. and Van Steirteghem, A. C. An improved treatment procedure for testicular biopsy specimens offers more efficient sperm recovery: case series. Fertil Steril 1997; 376–9.CrossRefGoogle Scholar
Esteves, S. C. and Verza, S. Jr. PESA/ TESA/TESE sperm processing, in Practical Manual of In Vitro Fertilization: Advanced Methods and Novel Devices, ed. Nagy, Z. P., Varghese, A. C. and Agarwal, A. (pp. 207–20) (Berlin: Springer Science + Business Media, 2012).Google Scholar
Popal, W. and Nagy, Z. P. Laboratory processing and intracytoplasmic sperm injection using epididymal and testicular spermatozoa: what can be done to improve outcomes? Clinics 2013; 68(S1):125–30.CrossRefGoogle ScholarPubMed
Muller, C. H. and Pagel, E. R. Recovery, isolation, identification, and preparation of spermatozoa from human testis, in Spermatogenesis: Methods and Protocols (Methods in Molecular Biology 927), ed. Carrell, D. T. and Ashton, K. I. (pp. 227–40) (Berlin: Springer Science + Business Media, 2013).Google Scholar

References

Polge, C., Smith, A. U. and Parkes, A. S. Revival of spermatazoa after vitrification and dehydation at low temperatures. Nature 1949; 164:666.CrossRefGoogle Scholar
Bunge, R. G. and Sherman, J. K. Fertilizing capacity of frozen human spermatozoa. Nature 1953; 172:767–8.CrossRefGoogle ScholarPubMed
Di Santo, M., Tarozzi, N., Nadalini, M. and Borini, A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012; 2012:854837.CrossRefGoogle ScholarPubMed
Isachenko, V., Isachenko, E., Katkov, I. I., et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod 2004; 71:1167–73.CrossRefGoogle ScholarPubMed
Spis, E., Bushkovskaia, A., Isachenko, E., et al. Conventional freezing vs. cryoprotectant-free vitrification of epididymal (MESA) and testicular (TESE) spermatozoa: Three live births. Cryobiology 2019; 90:100–2.CrossRefGoogle ScholarPubMed
Tao, Y., Sanger, E., Arpornas, S. and Leville, M. Human sperm vitification:the state of the art. Reprod Biol Endocrinol 2020; 18(1):17.CrossRefGoogle Scholar
Li, Y. X., Zhou, L., Lv, M. Q., et al. Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2019; 233:8492.CrossRefGoogle ScholarPubMed
World Health Organization (WHO). Laboratory Manual for the Examination and Processing of Human Semen, 5th ed. (Geneva, Switzerland: WHO, 2010).Google Scholar
AbdelHafez, F., Bedaiwy, M., El-Nashar, S. A., Sabanegh, E. and Desai, N. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update 2009; 15:153–64.Google Scholar
Gangrade, B. K. Cryopreservation of testicular and epididymal sperm: techniques and clinical outcomes of assisted conception. Clinics 2013; 68 (Suppl 1):131–40.CrossRefGoogle ScholarPubMed
Cohen, J., Garrisi, G. J., Congedo-Ferrara, T. A., et al. Cryopreservation of single human spermatozoa. Hum Reprod 1997; 12:9941001.CrossRefGoogle ScholarPubMed
Liu, S. and Li, F. Cryopreservation of single-sperm: where are we today? Reprod Biol Endocrinol 2020; 18(1):41.CrossRefGoogle ScholarPubMed
Desai, N. N., Blackmon, H. and Goldfarb, J. Single sperm cryopreservation on cryoloops: an alternative to hamster zona for freezing individual spermatozoa. Reprod Biomed Online 2004; 9:4753.CrossRefGoogle ScholarPubMed
Coetzee, K., Ozgur, K., Berkkanoglu, M., Bulut, H. and Isikli, A. Reliable single sperm cryopreservation in Cell Sleepers for azoospermia management. Andrologia 2016; 48(2):203–10.CrossRefGoogle ScholarPubMed
Endo, Y., Fujii, Y., Shintani, K., et al. Single spermatozoon freezing using Cryotop. J Mamm Ova Res 2011; 28:4752.CrossRefGoogle Scholar
Berkovitz, A., Miller, N., Silberman, M., Belenky, M. and Itsykson, P. A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Hum Reprod 2018; 33(11):1975–83.CrossRefGoogle ScholarPubMed

References

Consensus Group C. ‘There is only one thing that is truly important in an IVF laboratory: everything’. Cairo Consensus Guidelines on IVF Culture Conditions. Reprod Biomed Online 2020; 40(1):3360.CrossRefGoogle Scholar
Swain, J. E. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 2010; 21(1):616.CrossRefGoogle ScholarPubMed
ESHRE Guideline Group on Good Practice in IVF Labs, De los Santos, M. J., Apter, S., Coticchio, G., et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod 2016; 31(4):685–6.Google ScholarPubMed
Pickering, S. J., Braude, P. R., Johnson, M. H., Cant, A. and Currie., J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril 1990; 54(1):102–8.Google Scholar
Practice Committee of American Society for Reproductive Medicine, Practice Committee of Society for Assisted Reproductive Technology. Revised guidelines for human embryology and andrology laboratories. Fertil Steril 2008; 90(5 Suppl.):S45–59.Google Scholar
Eppig, J. J., O’Brien, M. and Wigglesworth, K. Mammalian oocyte growth and development in vitro. Mol Reprod Dev 1996; 44(2):260–73.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Mehlmann, L. M. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. J Reprod Fertil 2005; 130(6):791–9.Google ScholarPubMed
Rattanachaiyanont, M., Leader, A. and Léveillé, M. C. Lack of correlation between oocyte–corona–cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril 1999; 71(5):937–40.CrossRefGoogle ScholarPubMed
Veeck, L. L. Oocyte assessment and biological performance. Ann N Y Acad Sci 1988; 541(1):259–74.CrossRefGoogle ScholarPubMed
Veeck, L. L. The morphologic estimation of mature oocytes and their preparation for insemination, in In Vitro Fertilization Norfolk, ed. Jones, H. W. Jr., Jones, G. S., Hodgen, G. D. and Rosenwaks, Z., p. 81 (Baltimore: Williams & Wilkins, 1986).Google Scholar
Pellicer, A. and Simon, C. Reproduccion Asistida del Siglo XXI – Cuadernos Me (Editorial Medica Panamericana, 2001).Google Scholar
Trounson, A. Maturation of human oocytes in vitro and their developmental competence. J Reprod Fertil 2001; 121(1):5175.CrossRefGoogle ScholarPubMed

References

Cha, K. T., Koo, J. J., Ko, J. J., et al. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril 1991; 55:109–13.CrossRefGoogle Scholar
Trunson, A., Wood, C. and Kausche, A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril 1994; 62(2):353–62.Google Scholar
Barnes, F. L., Crombie, A., Gardner, D. K., et al. Blastcyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod 1995; 10(12):3243–7.CrossRefGoogle Scholar
Russell, J. B., Knezevich, K. M., Fabian, K. F. and Dickson, J. A. Unstimulated immature oocyte retrieval: early versus midfollicular endometrial priming. Fertil Steril 1997; 67(4):616–20.CrossRefGoogle ScholarPubMed
Lin, Y. H. and Hwang, J. L. In vitro maturation of human oocytes. Taiwan J Obstet Gynecol 2006; 45(2):95–9.CrossRefGoogle ScholarPubMed
Lim, K. S., Chae, S. J., Choo, C. W., et al. In vitro maturation: Clinical applications. Clin Exp Reprod Med 2013; 40(4):143–7.CrossRefGoogle ScholarPubMed
Farsi, M. M., Kamali, N. and Pourghasem, M. Embryological aspects of oocyte in vitro maturation. Int J Mol Cell Med 2013; 2(3):99109.Google ScholarPubMed
Abir, R,, Ben-Aharon, I., Garor, R. et al. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod 2016; 31(4):750–62.CrossRefGoogle ScholarPubMed
Karavani, G., Schachter-Safrai, N., Revel, A., et al. In vitro maturation rates in young premenarche patients. Fertil Steril 2019; 112(2):315–21.Google Scholar
Fouks, Y., Hamilton, E., Cohen, Y., et al. In-vitro maturation of oocytes recovered during cryopreservation of pre-pubertal girls undergoing fertility preservation. Reprod Biomed Online 2020; 41(5):869–73.Google Scholar
Chian, R. C., Buckett, W. M., Tulandi, T. and Tan, S. L. Prospective randomized study of human chorionic gonadotrophin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome. Hum Reprod 2000; 15(1):165–70.Google Scholar
Son, W. Y., Yoon, S. H. and Lim, J. H. Effect of gonadotrophin priming on in-vitro maturation of oocytes collected from women at risk of OHSS. Reprod Biomed Online 2006; 13(3):340–8.Google Scholar
Soderstrom-Anttila, V., Makinen, S., Tuuri, T. and Suikkari, A. M. Favourable pregnancy results with insemination of in vitro matured oocytes from unstimulated patients. Hum Reprod 2005; 20(6):1534–40.Google Scholar
Son, W. Y., Chung, J. T., Demirtas, E., et al. Comparison of in-vitro maturation cycles with and without in-vivo matured oocytes retrieved. Reprod Biomed Online 2008; 17(1):5967.CrossRefGoogle ScholarPubMed
Son, W. Y., Chung, J. T., Chian, R. C., et al. A 38 h interval between hCG priming and oocyte retrieval increase in vivo and in vitro oocyte maturation rate in programed IVM cycles. Hum Reprod 2008; 23(9):2010–16.Google Scholar
Son, W. Y. and Tan, S. L. Laboratory and embryological aspects of hCG-primed in vitro maturation cycles for patients with polycystic ovaries. Hum Reprod Update 2010; 16:675–89.Google Scholar

References

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 2011; 26:1270–83.Google Scholar
Balaban, B. and Ebner, T. Morphological selection of gametes and embryos: oocyte, in A Practical Guide to Selectiong Gametes and Embryos, ed. Montag, M. (pp. 8196) (Boca Raton, FL: CRC Press, Taylor & Francis Group, 2014).Google Scholar
Rienzi, L., Balaban, B., Ebner, T. and Mandelbaum, J. The oocyte. Hum Reprod 2012; 27:221.Google Scholar
Balaban, B. and Urman, B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online 2006; 12:608–15.Google Scholar
Ebner, T. Is oocyte morphology prognostic of embryo developmental potential after ICSI? Reprod Biomed Online 2006; 12:507–12.Google Scholar
Yi, X. F., Xi, H. L., Zhang, S. L. and Yang, J. Relationship between the positions of cytoplasmic granulation and the oocytes developmental potential in human. Sci Rep 2019; 9(1):7215.CrossRefGoogle ScholarPubMed
Massarotti, C., Stigliani, S., Ramone, A., et al. Occurrence of smooth endoplasmic reticulum aggregates in metaphase II oocytes: relationship with stimulation protocols and outcome of ICSI and IVF cycles. Hum Reprod 2021; 36(4):907–17.Google Scholar
Stigliani, S., Moretti, S., Casciano, I., et al. Presence of aggregates of smooth endoplasmic reticulum in MII oocytes affects oocyte competence: molecular-based evidence. Mol Hum Reprod 2018; 24(6):310–17.Google Scholar
Ferreux, L., Sallem, A., Chargui, A., et al. Is it time to reconsider how to manage oocytes affected by smooth endoplasmic reticulum aggregates? Hum Reprod 2019; 34(4):591600.CrossRefGoogle ScholarPubMed
Ferrarini Zanetti, B., Paes de Almeida Ferreira Braga, D., Souza Setti, A., et al. Is perivitelline space morphology of the oocyte associated with pregnancy outcome in intracytoplasmic sperm injection cycles. Eur J Obstet Gynecol Reprod Biol 2018; 231:225–9.CrossRefGoogle ScholarPubMed
Rienzi, L.Vajta, G. and Ubaldi, F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum Reprod Update 2011; 17(1):3445.Google Scholar
Manna, C., Nanni, L., Lumini, A. and Pappalardo, S. Artificial intelligence techniques for embryo and oocyte classification. Reprod BioMed Online 2013; 26(1):42–9.CrossRefGoogle ScholarPubMed
Firuzinia, S., Afzali, S. M., Ghasemian, F. and Mirroshandel, S. A. A robust deep learning-based multiclass segmentation method for analyzing human metaphase II oocyte images. Comput Methods Programs Biomed 2021; 201:105946.Google Scholar

References

Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertil Steril 2013; 99:3743.Google Scholar
Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1:884–6.Google ScholarPubMed
Glujovsky, D., Riestra, B., Sueldo, C., et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation (review). Cochrane Database Syst Rev 2014; 5(9):CD010047.Google Scholar
Vajta, G., Rienzi, L. and Ubaldi, F. Open versus closed systems for vitrification of human oocytes and embryos. Reprod Biomed Online 2015; 325–33.Google Scholar
Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67:7380.Google Scholar
Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on Setting Standards of Quality and Safety for the Donation, Procurement, Testing, Processing, Preservation, Storage and Distribution of Human Tissues and Cells. Official Journal of the European Union 2004; L 102/48–58.Google Scholar
Commission Directive 2006/17/EC of 8 February 2006 Implementing Directive 2004/23/EC of the European Parliament and of the Council as Regards Certain Technical Requirements for the Donation, Procurement and Testing of Human Tissues and Cells. Official Journal of the European Union 2006; L 38/40–52.Google Scholar
Commission Directive 2006/86/EC of 24 October 2006 Implementing Directive 2004/23/EC of the European Parliament and of the Council as Regards Traceability Requirements, Notification of Serious Adverse Reactions and Events and Certain Technical Requirements for the Coding, Processing, Preservation, Storage and Distribution of Human Tissues and Cells. Official Journal of the European Union 2006; L 294/32–50.Google Scholar
Parmegiani, L., Cognigni, G. E. and Filicori, M. Ultra-violet sterilization of liquid nitrogen prior to vitrification. Hum Reprod 2009; 24:2969.CrossRefGoogle ScholarPubMed
Parmegiani, L. and Rienzi, L. Hermetical goblets for cryostorage of human vitrified specimens. Hum Reprod 2011; 26:3204.CrossRefGoogle ScholarPubMed
Cobo, A., Romero, J. L., de Los Santos, M. J., et al. Storage of human oocytes in the vapor phase of nitrogen. Fertil Steril 2010; 94:1903–7.CrossRefGoogle ScholarPubMed
Cobo, A., Meseguer, M., Remohi, J., et al. Use of cryobanked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 2010; 25:2239–46.Google Scholar
Rienzi, L., Romano, S., Albricci, A., et al. Embryo development of fresh versus ‘vitrified’ metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 2010; 25:6673.Google Scholar
Rienzi, L., Cobo, A., Paffoni, A. et al. Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum Reprod 2012; 27:1606–12.CrossRefGoogle ScholarPubMed
Cobo, A., Garrido, N., Crespo, J., et al. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online 2012; 24:424–32.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×