Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T06:40:54.610Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 November 2024

Merlin D. Larson
Affiliation:
University of California, San Francisco
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eccles, JC, Eccles, RM, Iggo, A, Lundberg, A. Electrophysiological investigations on Renshaw cells. J Physiol. 1961; 1593: 461–78.Google Scholar
Eccles, RM. Inhibition by Renshaw’s cells. Actual Neurophysiol Paris. 1962; 4: 5566.Google ScholarPubMed
Walaszek, EJ, Chapman, JE. Bulbocapnine: An adrenergic and serotonin blocking agent. J Pharmacol Exp Ther. 1962; 137: 285–90.Google ScholarPubMed
Pendleton, RG, Finlay, E, Sherman, S. Effect of bulbocapnine as a peripheral dopamine receptor antagonist in the anesthetized cat. Naunyn Schmiedebergs Arch Pharmacol. 1975; 289: 171–8.CrossRefGoogle ScholarPubMed
Weight, FF, Salmoiraghi, GC. Adrenergic responses of Renshaw cells. J Pharmacol Exp Ther. 1966; 154: 391–7.Google ScholarPubMed
Bremer, F. Cerveau “isole” et physiologie du sommeil. Compte Rendus de la Société de Biologie Paris. 1935; 118: 1235–45.Google Scholar
Larson, MD. An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord. Brain Res. 1969; 15: 185200.CrossRefGoogle ScholarPubMed
Larson, MD, Major, MA. The effect of hexobarbital on the duration of the recurrent IPSP in cat motoneurons. Brain Res. 1970; 212: 309–11.Google Scholar
Guedel, AE. Inhalation Anesthesia. New York: Macmillan; 1937, pp. 1140.Google Scholar
Poe, J. The eye signs and their significance in general anesthesia. Curr Res Anesth Analgesia. 1926; 5: 156–9.Google Scholar
Cullen, DJ, Eger, EI, 2nd, Stevens, WC, Smith, NT, Cromwell, TH, Cullen, BF, et al. Clinical signs of anesthesia. Anesthesiology. 1972; 36: 2136.CrossRefGoogle ScholarPubMed
Posner, J, Saper, CB, Schiff, ND, Classen, J. Plum and Posner’s Diagnosis and Treatment of Stupor and Come. New York: Oxford University Press; 2019.Google Scholar
Loewenfeld, IE. Mechanism of reflex dilation of the pupil: Historical review and experimental analysis. Doc Opthalmol. 1958; 12: 184448.Google ScholarPubMed
Lee, HK, Wang, SC. Mechanism of morphine-induced miosis in the dog. J Pharmacol Exp Ther. 1975; 192: 415–31.Google ScholarPubMed
Larson, MD. Pupillary effects of general anesthesia. Anesthesiol Rev. 1986; 13: 2531.Google Scholar
Stark, L. The pupillary control system: Its non-linear adaptive and stochastic engineering design characteristics. Automatica. 1969; 5: 655–76.CrossRefGoogle Scholar
Larson, MD, Sessler, DI, McGuire, J, Hynson, JM. Isoflurane, but not mild hypothermia, depresses the human pupillary light reflex. Anesthesiology. 1991; 75: 62–7.CrossRefGoogle Scholar
Larson, MD, Sessler, DI, Washington, DE, Merrifield, BR, Hynson, JA, McGuire, J. Pupillary response to noxious stimulation during isoflurane and propofol anesthesia. Anesth Analg. 1993; 76: 1072–8.CrossRefGoogle ScholarPubMed
Da Vinci, L. Codex Arundel. The British Library: 1478–1519.Google Scholar
Strong, DS. Leonardo on the Eye: A Critical Commentary of Manuscript D in the Bibliotheque Nationale. Paris: Self Published; 1979.Google Scholar
Yic, CD, Prada, G, Paz, SI, Moraes, L, Pontet, JC, Lasso, ME, et al. Comparison of ultrasonographic versus infrared pupillary assessment. Ultrasound J. 2020; 12: 38.CrossRefGoogle ScholarPubMed
Volpe, NJ, Plotkin, ES, Maguire, MG, Hariprasad, R, Galetta, SL. Portable pupillography of the swinging flashlight test to detect afferent pupillary defects. Ophthalmology. 2000; 107: 1913–21.CrossRefGoogle ScholarPubMed
Thompson, HS. The vitality of the pupil: A history of the clinical use of the pupil as an indicator of visual potential. J Neuro-ophthalmol. 2003; 23: 213–24.CrossRefGoogle ScholarPubMed
Ascher, KW. The first pupillary light reflex test ever performed. Trans Am Ophthalmol Soc. 1962; 60: 53–9.Google ScholarPubMed
Ascher, KW. The first test of the pupillary reflex to light. Boll Ocul. 1963; 42: 586–91.Google ScholarPubMed
Wade, NJ, Finger, S. The eye as an optical instrument: From camera obscura to Helmholtz’s perspective. Perception. 2001; 30: 1157–77.CrossRefGoogle ScholarPubMed
Whytt, R. An Essay on the Vital and Other Involuntary Motions of Animals. Edinburgh: T. Beckert, Auld & Smellie; 1751.CrossRefGoogle Scholar
Whytt, R. The Works of Robert Whytt. Edinburgh: T. Beckert, Auld & Smellie ; 1768.Google Scholar
Kolliker, A. Ueber den Dilatator Pupillae. Anat Anz. 1897; 154.Google Scholar
Hall, M. On the reflex function of the medulla oblongata and the medulla spinalis. Phil Trans Roy Soc Lond. 1833; 1833: 635–65.Google Scholar
Fontana, F. Dei moti dell’iride. Nella Stamp Jacopo Giusti. 1765; 1106.Google Scholar
Mery, J. Des mouvements de l’iris, et par occasion, de lar partie principale de l’organe de la vue. Histoire Académie Roy Sci Paris. 1704; 261–71.Google Scholar
de la Hire, P. Explication de quelques faits d’optique and de la manière dont se fait la vision. Mem Acad Roy Sci. 1709; 119–32.Google Scholar
Haller, A. A Dissertation on the Sensible and Irritable Parts of Animals. London: Gottingae; 1755.Google Scholar
Weber, E, Weber, EH. Ecperiments on galvanomaneticae irritatos, motum cordis retardare et adeo intercipare. Ann Univ Med Milano. 1845; 20: 227–33.Google Scholar
Sherrington, CS. The Integrative Action of the Nervous System. New Haven, CT: Yale University Press; 1906.Google Scholar
Brock, L, Coombs, J, Eccles, J. The recording of potentials from motoneurones with an intracellular electrode. J Physiol. 1952; 117: 431–60.CrossRefGoogle ScholarPubMed
Rossi, GF. Study of the nature of miosis during sleep and during barbiturate anesthesia. Arch Sci Biol. 1957; 41: 4656.Google ScholarPubMed
Loewenfeld, IE. The Pupil: Anatomy, Physiology and Clinical Applications. Woburn, MA: Butterworth-Heinemann; 1999.Google Scholar
Peinkhofer, C, Knudsen, GM, Moretti, R, Kondziella, D. Cortical modulation of pupillary function: Systematic review. Peer J. 2019; e6882.CrossRefGoogle Scholar
Knox, R. An Historical Account of the Island of Ceylon in the East Indies. London: Robert Chiswell; 1681.Google Scholar
Keeler, CR. 150 years since Babbage’s ophthalmoscope. Arch Ophthalmol. 1997; 115: 1456–7.CrossRefGoogle ScholarPubMed
Helmholtz, HL. Beschreibung eines Augen-Spiefels zur Intersuchung der Netzhaut im lebenden Auge. Berlin: Forstner; 1851.Google Scholar
Gifford, ES. The Evil Eye. New York: The MacMillan Co.; 1958.Google Scholar
du Petit, F-P. Mémoire dans laquelle il est démontré que les nerfs intercostaux fournissent des rameaux qui portent des espirits dans les yeux. Mem Acad Sci. 1727; 119.Google Scholar
Anderson, HK. Paradoxical pupillary dilation and other ocular phenomena caused by lesions of the cervical sympathetic tract. J Physiol. 1903; 30: 290310.CrossRefGoogle Scholar
Larson, MD, Gibbons, CA, Chiu, FKM. Paradoxical pupillary dilation in a patient with Horner’s syndrome. Anesthesiol Rev. 1983; 10: 22–5.Google Scholar
Cannon, WB, Rosenblueth, A. Supersensitivity of Denervated Structures. New York: Macmillan; 1949.Google Scholar
Gamlin, PD, McDougal, DH, Pokorny, J, Smith, VC, Yau, KW, Dacey, DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007; 47: 946–54.CrossRefGoogle ScholarPubMed
Edinger, L. Ueber enn Verlauf der centralen Hirnnervenbahnen mit Demonstration von Praparaten. Archiv Psychiatrie Nervenkranheiten. 1885; 16: 858–89.Google Scholar
Westphal, CFO. Ueber einen Fall von chronischer progressiver Lahmung der Augenmuskeln. Archiv Psychiatrie Nervenkranheiten. 1887; 18: 846–71.Google Scholar
Zuniga, A, Ryabinin, AE. Involvement of centrally projecting Edinger-Westphal nucleus neuropeptides in actions of addictive drugs. Brain Sci. 2020; 10: 2.CrossRefGoogle ScholarPubMed
Kozicz, T, Bittencourt, JC, May, PJ, Reiner, A, Gamlin, PD, Palkovits, M, et al. The Edinger-Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol. 2011; 519: 1413–34.CrossRefGoogle ScholarPubMed
May, PJ, Sun, W, Wright, NF, Erichsen, JT. Pupillary light reflex circuits in the macaque monkey: The preganglionic Edinger-Westphal nucleus. Brain Struct Funct. 2020; 225: 403–25.Google ScholarPubMed
Sillito, AM, Zbrozyna, AW. The activity characteristics of the preganglionic pupilloconstrictor neurones. J Physiol. 1970; 211: 767–79.CrossRefGoogle ScholarPubMed
Larson, MD, Behrends, M. Portable infrared pupillometry: A review. Anesth Analg. 2015; 120: 1242–53.CrossRefGoogle ScholarPubMed
Larson, MD, Sessler, DI, Washington, DE, Merrifield, BR, Hynson, JA, McGuire, J. Pupillary response to noxious stimulation during isoflurane and propofol anesthesia. Anesth Analg. 1993; 76: 1072–8.CrossRefGoogle ScholarPubMed
Eilers, H, Larson, MD. The effect of ketamine and nitrous oxide on the human pupillary light reflex during general anesthesia. Auton Neurosci. 2010; 152: 108–14.CrossRefGoogle ScholarPubMed
Rukmini, AV, Milea, D, Gooley, JJ. Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Front Neurol. 2019; 10: 76.CrossRefGoogle ScholarPubMed
Mure, LS. Intrinsically photosensitive retinal ganglion cells of the human retina. Front Neurol. 2021; 12: 636330.CrossRefGoogle ScholarPubMed
Zeitzer, J, Naijar, R, Kass, M. Impact of blue-depleted white light on pupil dynamics, melatonin suppression and subjective alertness following real-world light exposure. Sleep Sci Pract. 2018; 1: 123.Google Scholar
Mathot, S. Pupillometry: Psychology, physiology, and function. J Cogn. 2018; 11: 16.CrossRefGoogle Scholar
Zele, AJ, Gamlin, PD. Editorial: The pupil: Behavior, anatomy, physiology and clinical biomarkers. Front Neurol. 2020; 11: 211.CrossRefGoogle ScholarPubMed
Steinhauer, SR, Condray, R, Kasparek, A. Cognitive modulation of midbrain function: Task-induced reduction of the pupillary light reflex. Int J Psychophysiol. 2000; 39: 2130.CrossRefGoogle ScholarPubMed
Steinhauer, SR, Hakerem, G. The pupillary response in cognitive psychophysiology and schizophrenia. Ann N Y Acad Sci. 1992; 658: 182204.CrossRefGoogle ScholarPubMed
Steinhauer, SR, Hakerem, G, Spring, BJ. The pupillary response as a potential indicator of vulnerability to schizophrenia. Psychopharmacol Bull. 1979; 15: 44–5.Google ScholarPubMed
Steinhauer, SR, Bradley, MM, Siegle, GJ, Roecklein, KA, Dix, A. Publication guidelines and recommendations for pupillary measurement in psychophysiological studies. Psychophysiology. 2022; 59: e14035.CrossRefGoogle ScholarPubMed
Kelbsch, C, Strasser, T, Chen, Y, Feigl, B, Gamlin, PD, Kardon, R, et al. Standards in pupillography. Front Neurol. 2019; 10: 129.CrossRefGoogle ScholarPubMed
Citrenbaum, C, Corlier, J, Ngo, D, Vince-Cruz, N, Wilson, A, Wilke, SA, et al. Pretreatment pupillary reactivity is associated with differential early response to 10 Hz and intermittent theta-burst repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD). Brain Stimul. 2023; 6: 1566–71.Google Scholar
Papesh, MH, Goldinger, SD (eds). Modern Pupillometry: Cognition, Neuroscience, and Practical Applications. New York: Springer International; 2024.CrossRefGoogle Scholar
Eccles, JC. The synapse: From electrical to chemical transmission. Annu Rev Neurosci. 1982; 5: 325–39.CrossRefGoogle ScholarPubMed
Glisson, F. Anatomia Hepatis. London: Du-Gard for Pullein; 1654.Google Scholar
Elliott, TR. On the action of adrenalin. Proceedings of the Physiological Society of London; May 21, 1904.Google Scholar
Loewi, O. On the background of the discovery of neurochemical transmission. J Mt Sinai Hosp New York. 1957; 24: 1014–16.Google ScholarPubMed
Bernstein, J. Zer Irisbewegung. Erwiderung an Herrn Grunhagen. Z Rat Med. 1867; 29: 35–7.Google Scholar
Bremner, FD. The fixed dilated pupil: Pilocarpine better than a scan. Br Med J. 2008; 336: 171.CrossRefGoogle ScholarPubMed
Larson, MD. A simple test for scopolamine mydriasis. Anesth Analg. 1991; 73: 824.CrossRefGoogle ScholarPubMed
Proudfoot, A. The early toxicology of physostigmine: A tale of beans, great men and egos. Toxicol Rev. 2006; 25: 99138.CrossRefGoogle ScholarPubMed
Langley, JL, Anderson, HK. On the mechanisms of the movements of the iris. J Physiol. 1892; 13: 500–97.CrossRefGoogle ScholarPubMed
Bender, MB, Weinstein, EA. Actions of adrenalin and acetylcholine on the denervated iris of the cat and monkey. Am J Physiol. 1940; 130: 268–75.CrossRefGoogle Scholar
Omary, R, Bockisch, CJ, Landau, K, Kardon, RH, Weber, KP. Buzzing sympathetic nerves: A new test to enhance anisocoria in Horner’s syndrome. Front Neurol. 2019; 10: 107.CrossRefGoogle ScholarPubMed
Langley, JN. Sketch of the progress of discovery in the eighteenth century as regards the autonomic nervous system. J Physiol. 1916; 504: 225–58.Google Scholar
Langley, JN. On the stimulation and paralysis of nerve cells and nerve endings: Part II. Paralysis by curari, strychnine and brucine and its antagonism by nicotine.J Physiol. 1918; 52: 247–66.CrossRefGoogle ScholarPubMed
Langley, JN. The vascular dilatation caused by the sympathetic and the course of vaso-motor nerves. J Physiol. 1923; 58: 70–3.CrossRefGoogle ScholarPubMed
Paton, WD. The paralysis of autonomic ganglia, with special reference to the therapeutic effect of ganglion-blocking drugs. Br Med J. 1951; 1: 773–8.CrossRefGoogle Scholar
Erdem, U, Gundogan, FC, Dinc, UA, Yolcu, U, Ilhan, A, Altun, S. Acute effect of cigarette smoking on pupil size and ocular aberrations: A pre- and post-smoking study. J Ophthalmol. 2015; 625470.CrossRefGoogle Scholar
Roberge, RJ, Krenzelok, EP. Prolonged coma and loss of brainstem reflexes following amitriptyline overdose. Vet Hum Toxicol. 2001; 43: 42–4.Google ScholarPubMed
Larson, MD, Talke, PO. Effect of dexmedetomidine, an alpha2-adrenoceptor agonist, on human pupillary reflexes during general anaesthesia. Br J Clin Pharmacol. 2001; 51: 2733.CrossRefGoogle ScholarPubMed
Larson, MD. The effect of antiemetics on pupillary reflex dilation during epidural/general anesthesia. Anesth Analg. 2003; 97: 1652–6.CrossRefGoogle ScholarPubMed
Pretorius, JL, Phillips, M, Langley, RW, Szabadi, E, Bradshaw, CM. Comparison of clozapine and haloperidol on some autonomic and psychomotor functions, and on serum prolactin concentration, in healthy subjects. Br J Clin Pharmacol. 2001; 52: 322–6.CrossRefGoogle ScholarPubMed
Campobasso, CP, De Micco, F, Corbi, G, Keller, T, Hartung, B, Daldrup, T, et al. Pupillary effects in habitual cannabis consumers quantified with pupillography. Forensic Sci Int. 2020; 317: 110559.CrossRefGoogle ScholarPubMed
Hartman, RL, Richman, JE, Hayes, CE, Huestis, MA. Drug Recognition Expert (DRE) examination characteristics of cannabis impairment. Accid Anal Prev. 2016; 92: 219–29.CrossRefGoogle ScholarPubMed
Kolbrich, EA, Goodwin, RS, Gorelick, DA, Hayes, RJ, Stein, EA, Huestis, MA. Physiological and subjective responses to controlled oral 3,4-methylenedioxymethamphetamine administration. J Clin Psychopharmacol. 2008; 28: 432–40.CrossRefGoogle ScholarPubMed
Charles, ST, Hamasaki, DI. The effect of intraocular pressure on the pupil size. Arch Ophthalmol. 1970; 83: 729–33.CrossRefGoogle ScholarPubMed
Siddiqui, AA, Clarke, JC, Grzybowski, A. William John Adie: The man behind the syndrome. Clin Exp Ophthalmol. 2014; 42: 778–84.CrossRefGoogle Scholar
Bista Karki, S, Coppell, KJ, Mitchell, LV, Ogbuehi, KC. Dynamic pupillometry in type 2 diabetes: Pupillary autonomic dysfunction and the severity of diabetic retinopathy. Clin Ophthalmol. 2020; 14: 3923–30.CrossRefGoogle ScholarPubMed
Levy, DM, Rowley, DA, Abraham, RR. Portable infrared pupillometry using Pupilscan: Relation to somatic and autonomic nerve function in diabetes mellitus. Clin Auton Res. 1992; 2: 335–41.CrossRefGoogle ScholarPubMed
Ferrari, GL, Marques, JL, Gandhi, RA, Heller, SR, Schneider, FK, Tesfaye, S, et al. Using dynamic pupillometry as a simple screening tool to detect autonomic neuropathy in patients with diabetes: A pilot study. Biomed Eng Online. 2010; 9: 26.CrossRefGoogle ScholarPubMed
Larson, MD, Tayefeh, F, Sessler, DI, Daniel, M, Noorani, M. Sympathetic nervous system does not mediate reflex pupillary dilation during desflurane anesthesia. Anesthesiology. 1996; 85: 748–54.CrossRefGoogle Scholar
Eger, EI, Weiskopf, RB. Sympathetic hyperactivity during desflurane anesthesia. Anesthesiology. 1994; 80: 482–3.CrossRefGoogle ScholarPubMed
Larson, MD, Herman, WC. Bilateral dilated nonreactive pupils during surgery in a patient with undiagnosed pheochromocytoma. Anesthesiology. 1992; 77: 200–2.CrossRefGoogle Scholar
Levatin, P. Pupillary escape in disease of the retina or optic nerve. Arch Ophthalmol. 1959; 62: 768–79.CrossRefGoogle ScholarPubMed
Talukder, RK, Sutradhar, SR, Rahman, KM, Uddin, MJ, Akhter, H. Guillain-Barré syndrome. Mymensingh Med J. 2011; 20: 748–56.Google Scholar
Kaymakamzade, B, Selcuk, F, Koysuren, A, Colpak, AI, Mut, SE, Kansu, T. Pupillary involvement in Miller Fisher Syndrome. Neuro-Ophthalmology. 2013; 37: 111–15.CrossRefGoogle ScholarPubMed
Liu, J, Tang, F, Chen, X, Li, Z. Guillain-Barré syndrome with incomplete oculomotor nerve palsy after traumatic brain injury: Case report and literature review. Brain Sci. 2023; 13: 527.CrossRefGoogle ScholarPubMed
Larson, MD. Dilation of the pupil in human subjects after intravenous thiopental. Anesthesiology. 1981; 54: 246–9.CrossRefGoogle ScholarPubMed
Ravnborg, MJF, Jensen, NH, Holk, IK. Pupillary diameter and ventilatory carbon dioxide sensitivity after epidural morphine and buprenorphine in volunteers. Anesth Analg. 1987; 66: 847–51.CrossRefGoogle ScholarPubMed
Larson, MD. Alteration of the human pupillary light reflex by general anesthesia. Anesthesiol Rev. 1989; May/June: 25–9.Google Scholar
Pickworth, WB, Bunker, E, Welch, P, Cone, E. Intravenous buprenorphine reduces pupil size and the light reflex in humans. Life Sci. 1991; 49: 129–38.CrossRefGoogle ScholarPubMed
Solyman, O, Abushanab, MMI, Carey, AR, Henderson, AD. Pilot study of smartphone infrared pupillography and pupillometry. Clin Ophthalmol. 2022; 16: 303–10.Google ScholarPubMed
Barry, C, de Souza, J, Xuan, Y, Holden, J, Granholm, E. At home pupillometry using smartphone facial identification. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022; 235: 112.Google Scholar
Barry, C, Wang, E. Racially fair pupillometry measurements for RGB smartphone cameras using the far-red spectrum. Sci Rep. 2023; 13: 13841.CrossRefGoogle ScholarPubMed
McKay, RE, Kohn, MA, Schwartz, ES, Larson, MD. Evaluation of two portable pupillometers to assess clinical utility. Concussion. 2020; 54: CNC82.CrossRefGoogle Scholar
Larson, MD. A new pupillometer for operating room use. Anesthesiol Rev. 1978; March: 41–5.Google Scholar
Schallenberg, M, Bangre, V, Steuhl, KP, Kremmer, S, Selbach, JM. Comparison of the Colvard, Procyon, and Neuroptics pupillometers for measuring pupil diameter under low ambient illumination. J Refract Surg. 2010; 26: 134–43.CrossRefGoogle ScholarPubMed
Vellucci, SV. The effects of ether stress and betamethasone treatment on the concentrations of norepinephrine and dopamine in various regions of the rat brain. Br J Pharmacol. 1977; 60: 601–5.CrossRefGoogle ScholarPubMed
Lowenstein, O, Feinberg, R, Loewenfeld, IE. Pupillary movements during acute and chronic fatigue. A new test for objective measurement of tiredness. Invest Ophthal. 1963; 2: 138–57.Google Scholar
Tsukahara, JS, Harrison, TL, Engle, RW. The relationship between baseline pupil size and intelligence. Cogn Psychol. 2016; 91: 109–23.CrossRefGoogle ScholarPubMed
Daniel, M, Charier, D, Pereira, B, Pachcinski, M, Sharshar, T, Molliex, S. Prognosis value of pupillometry in COVID-19 patients admitted in intensive care unit. Auton Neurosci. 2022; 245: 103057.CrossRefGoogle ScholarPubMed
Daniel, M, Severinghaus, J, Bickler, P, Larson, MD. Hypoxia does not alter the human pupil diameter or the pupillary light reflex while breathing hypoxic mixtures. Anesthesiology. Abstract # 190. American Society of Anesthesiologists Annual Meeting, 1995.Google Scholar
McKesson, EI. Fifty-seven years ago in anesthesia & analgesia. Nitrous oxide anesthesia: A consideration of some associated factors. Anesth Analg. 1932; 11: 54–9.Google Scholar
McMechan, FH, McMechan, L, McKesson, EI. Fifty-two years ago, in anesthesia & analgesia. Elmer Isaac McKesson, MD, anesthetist: His life and work. 1937. Anesth Analg. 1989; 69: 259.CrossRefGoogle ScholarPubMed
Zhao, D, Weil, MH, Tang, W, Klouche, K, Wann, SR. Pupil diameter and light reaction during cardiac arrest and resuscitation. Crit Care Med. 2001; 2: 825–8.Google Scholar
Larson, MD, Gray, AT. The diagnosis of brain death. N Engl J Med. 2001; 345: 616–17; author reply 7–8.Google ScholarPubMed
Larson, MD, May, J. Effect of asphyxia on the pupils of brain-dead subjects. Resuscitation. 2002; 55: 31–6.CrossRefGoogle ScholarPubMed
Kramer, CL, Rabinstein, AA, Wijdicks, EF, Hocker, SE. Neurologist versus machine: Is the pupillometer better than the naked eye in detecting pupillary reactivity? Neurocrit Care. 2015; 21: 309–11.Google Scholar
Yang, E, Kreuzer, M, Hesse, S, Davari, P, Lee, SC, Garcia, PS. Infrared pupillometry helps to detect and predict delirium in the post-anesthesia care unit. J Clin Monit Comput. 2018; 32: 359–68.CrossRefGoogle ScholarPubMed
Usui, S, Stark, L. A model for nonlinear stochastic behavior of the pupil. Biol Cybern. 1982; 45: 1321.CrossRefGoogle Scholar
Okamoto, S, Ishizawa, M, Inoue, S, Sakuramoto, H. Use of automated infrared pupillometry to predict delirium in the intensive care unit: A prospective observational study. SAGE Open Nurs. 2022; 8: 23779608221124417.CrossRefGoogle ScholarPubMed
Favre, E, Bernini, A, Morelli, P, Pasquier, J, Miroz, JP, Abed-Maillard, S, et al. Neuromonitoring of delirium with quantitative pupillometry in sedated mechanically ventilated critically ill patients. Crit Care. 2020; 24: 66.CrossRefGoogle ScholarPubMed
Lee, S, Jung, DE, Park, D, Kim, TJ, Lee, HC, Bae, J, et al. Intraoperative neurological pupil index and postoperative delirium and neurologic adverse events after cardiac surgery: An observational study. Sci Rep. 2023; 13: 13838.CrossRefGoogle ScholarPubMed
Loewenfeld, IE, Newsome, DA. Iris mechanics. I. Influence of pupil size on dynamics of pupillary movements. Am J Ophthalmol. 1971; 71: 347–62.CrossRefGoogle ScholarPubMed
Newsome, DA, Loewenfeld, IE. Iris mechanics. II. Influence of pupil size on details of iris structure. Am J Ophthalmol. 1971; 71: 553–73.CrossRefGoogle ScholarPubMed
Larson, MD, Kurz, A, Sessler, DI, Dechert, M, Bjorksten, AR, Tayefeh, F. Alfentanil blocks reflex pupillary dilation in response to noxious stimulation but does not diminish the light reflex. Anesthesiology. 1997; 87: 849–55.CrossRefGoogle Scholar
Shirozu, K, Setoguchi, H, Tokuda, K, Karashima, Y, Ikeda, M, Kubo, M, et al. The effects of anesthetic agents on pupillary function during general anesthesia using the automated infrared quantitative pupillometer. J Clin Monit Comput. 2017; 31: 291–6.CrossRefGoogle ScholarPubMed
Belani, KG, Sessler, DI, Larson, MD, Lopez, MA, Washington, DE, Ozaki, M, et al. The pupillary light reflex. Effects of anesthetics and hyperthermia.Anesthesiology. 1993; 79: 23–7.CrossRefGoogle ScholarPubMed
Leslie, K, Sessler, DI, Smith, WD, Larson, MD, Ozaki, M, Blanchard, D, et al. Prediction of movement during propofol/nitrous oxide anesthesia: Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators.Anesthesiology. 1996; 84: 5263.CrossRefGoogle ScholarPubMed
Guglielminotti, J, Mentre, F, Gaillard, J, Ghalayini, M, Montravers, P, Longrois, D. Assessment of pain during labor with pupillometry: A prospective observational study. Anesth Analg. 2013; 116: 1057–62.CrossRefGoogle ScholarPubMed
Tyson, RN. Simulation of cerebral death by succinylcholine sensitivity. Arch Neurol. 1974; 30: 409–11.CrossRefGoogle ScholarPubMed
Gray, AT, Krejci, ST, Larson, MD. Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans. Arch Neurol. 1997; 54: 579–84.CrossRefGoogle Scholar
Schmidt, JE, Tamburro, RF, Hoffman, GM. Dilated nonreactive pupils secondary to neuromuscular blockade. Anesthesiology. 2000; 92: 1476–80.CrossRefGoogle ScholarPubMed
Rodrigues, EDP, da Costa, GC, Braga, DQ, Pinto, J, Lessa, MA. Rocuronium-induced dilated nonreactive pupils in a patient with coronavirus disease 2019: A case report. A A Pract. 2021; 15: e01491.CrossRefGoogle Scholar
He, H, Yu, Z, Zhang, J, Cheng, W, Long, Y, Zhou, X, et al. Bilateral dilated nonreactive pupils secondary to rocuronium infusion in an ARDS patient treated with ECMO therapy: A case report. Med Baltimore. 2020; 99: e21819.CrossRefGoogle Scholar
Pinheiro, HM, da Costa, RM. Pupillary light reflex as a diagnostic aid from computational viewpoint: A systematic literature review. J Biomed Inform. 2021; 117: 103757.CrossRefGoogle ScholarPubMed
Larson, MD, O’Donnell, BR, Merrifield, BF. Ocular hypothermia depresses the human pupillary light reflex. Invest Ophthalmol Vis Sci. 1991; 3213: 3285–7.Google Scholar
Southwick, FS, Dalglish, PH Jr. Recovery after prolonged asystolic cardiac arrest in profound hypothermia. A case report and literature review. JAMA. 1980; 243: 1250–3.CrossRefGoogle ScholarPubMed
Fischbeck, KH, Simon, RP. Neurological manifestations of accidental hypothermia. Ann Neurol. 1981; 10: 384–7.CrossRefGoogle ScholarPubMed
Stein, RB, Gordon, T, Shriver, J. Temperature dependence of mammalian muscle contractions and ATPase activities. Biophys J. 1982; 40: 97107.CrossRefGoogle ScholarPubMed
Peluso, L, Baccanelli, F, Grazioli, V, Panisi, P, Taccone, FS, Albano, G. Pupillary dysfunction during hypothermic circulatory arrest: Insights from automated pupillometry. Crit Care. 2023; 27: 197.CrossRefGoogle ScholarPubMed
Daniel, M, Larson, MD, Eger, EI, 2nd, Noorani, M, Weiskopf, RB. Fentanyl, clonidine, and repeated increases in desflurane concentration, but not nitrous oxide or esmolol, block the transient mydriasis caused by rapid increases in desflurane concentration. Anesth Analg. 1995; 81: 372–8.Google ScholarPubMed
Weiskopf, RB, Eger, EI, 2nd, Daniel, M, Noorani, M. Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology. 1995; 83: 1173–8.CrossRefGoogle ScholarPubMed
Moore, MA, Weiskopf, RB, Eger, EI, 2nd, Noorani, M, McKay, L, Damask, M. Rapid 1% increases of end-tidal desflurane concentration to greater than 5% transiently increase heart rate and blood pressure in humans. Anesthesiology. 1994; 81: 94–8.CrossRefGoogle ScholarPubMed
Koss, MC. Pupillary dilation as an index of central nervous system alpha 2 adrenergic activation. J Pharmacol Meth. 1986; 15: 119.CrossRefGoogle Scholar
Szabadi, E, Bradshaw, C. Autonomic pharmacology of alpha 2 adrenoceptors. J Psychopharmacol. 1996; 10 Suppl. 3: 618.Google Scholar
Joshi, S, Li, Y, Kalwani, RM, Gold, JI. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron. 2016; 89: 221–34.CrossRefGoogle ScholarPubMed
Bonvallet, M, Zbrozyna, A. Reticular control of the autonomic system, and particularly, the sympathetic and parasympathetic innervation of the pupil. Arch Ital Biol. 1963; 101: 174207.Google ScholarPubMed
Mullaguri, N, Katyai, N, Sarwai, A, Newey, C. Pitfall in pupillometry: Exaggerated ciliospinal reflex in a patient in barbiturate coma mimicking a nonreactive pupil. Cureus. 2017; 9: e2004.Google Scholar
Andrefsky, JC, Frank, JI, Chyatte, D. The ciliospinal reflex in pentobarbital coma. J Neurosurg. 1999; 90: 644–6.CrossRefGoogle ScholarPubMed
Jørgensen, EO, Malchow-Møller, AM. Cerebral prognostic signs during cardiopulmonary resuscitation. Resuscitation. 1978; 64: 217–25.Google Scholar
Reeves, A, Posner, J. The ciliospinal response in man. Neurology. 1969; 19: 1145–52.CrossRefGoogle ScholarPubMed
Yang, LL, Niemann, CU, Larson, MD. Mechanism of pupillary reflex dilation in awake volunteers and in organ donors. Anesthesiology. 2003; 99: 1281–6.CrossRefGoogle ScholarPubMed
Ji, SH, Cho, SA, Jang, YE, Kim, EH, Lee, JH, Kim, JT, et al. Pupil response to painful stimuli during inhalation anaesthesia without opioids in children. Acta Anaesthesiol Scand. 2022; 66: 803–10.CrossRefGoogle ScholarPubMed
Aissou, M, Snauwaert, A, Dupuis, C, Atchabahian, A, Aubrun, F, Beaussier, M. Objective assessment of the immediate postoperative analgesia using pupillary reflex measurement: A prospective and observational study. Anesthesiology. 2012; 1165: 1006–12.Google Scholar
Ossipov, M, Dussor, G, Porreca, F. Central modulation of pain. J Clin Invest. 2010; 120: 3779–87.CrossRefGoogle ScholarPubMed
Larson, MD, Gupta, DK. Pupillary reflex dilation to predict movement: A step forward toward real-time individualized intravenous anesthetics. Anesthesiology. 2015; 122: 961–3.CrossRefGoogle ScholarPubMed
Guglielminotti, J, Grillot, N, Paule, M, Mentre, F, Servin, F, Montravers, P, et al. Prediction of movement to surgical stimulation by the pupillary dilatation reflex amplitude evoked by a standardized noxious test. Anesthesiology. 2015; 122: 985–93.CrossRefGoogle ScholarPubMed
Marco-Arino, N, Vide, S, Agusti, M, Chen, A, Jaramillo, S, Irurzun-Arana, I, et al. Semimechanistic models to relate noxious stimulation, movement, and pupillary dilation responses in the presence of opioids. CPT Pharmacometrics Syst Pharmacol. 2022; 11: 581–93.CrossRefGoogle ScholarPubMed
Fields, HL, Barbaro, NM, Heinricher, MM. Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res. 1988; 77: 245–57.CrossRefGoogle ScholarPubMed
Fields, HL, Basbaum, AI. Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol. 1978; 40: 217–48.CrossRefGoogle ScholarPubMed
Elyn, A, Saffon, N, Larson, MD. Monitoring the depth of palliative sedation by video-pupillometry: A case report. Palliat Med. 2021; 35: 2024–7.CrossRefGoogle ScholarPubMed
Larson, MD, Berry, PD, May, J, Bjorksten, A, Sessler, DI. Latency of pupillary reflex dilation during general anesthesia. J Appl Physiol. 2004; 97: 725–30.CrossRefGoogle ScholarPubMed
Larson, MD, Sessler, DI, Ozaki, M, McGuire, J, Schroeder, M. Pupillary assessment of sensory block level during combined epidural-general anesthesia. Anesthesiology. 1993; 79: 42–8.CrossRefGoogle ScholarPubMed
Larson, MD, Berry, PD. Supraspinal pupillary effects of intravenous and epidural fentanyl during isoflurane anesthesia. Reg Anesth Pain Med. 2000; 25: 60–6.CrossRefGoogle ScholarPubMed
Isnardon, S, Vinclair, M, Genty, C, Hebrard, A, Albaladejo, P, Payen, JF. Pupillometry to detect pain response during general anaesthesia following unilateral popliteal sciatic nerve block: A prospective, observational study. Eur J Anaesthesiol. 2013; 30: 429–34.CrossRefGoogle ScholarPubMed
Larson, MD, Fung, RS, Infosino, AJ, Baba, A. Efficacy of epidural block during general anesthesia. Anesthesiology. 2006; 105: 632–3.CrossRefGoogle ScholarPubMed
Migeon, A, Desgranges, FP, Chassard, D, Blaise, BJ, et al. Pupillary reflex dilation and analgesia nociception index monitoring to assess the effectiveness of regional anesthesia in children anesthetised with sevoflurane. Pediatr Anesth. 2013. 23: 1160–5.CrossRefGoogle ScholarPubMed
Barvais, L, Engelman, E, Eba, JM, Coussaert, E, Cantraine, F, Kenny, GN. Effect site concentrations of remifentanil and pupil response to noxious stimulation. Br J Anaesth. 2003; 91: 347–52.CrossRefGoogle ScholarPubMed
Constant, I, Nghe, MC, Boudet, L, Berniere, J, Schrayer, S, Seeman, R, et al. Reflex pupillary dilatation in response to skin incision and alfentanil in children anaesthetized with sevoflurane: A more sensitive measure of noxious stimulation than the commonly used variables. Br J Anaesth. 2006; 96: 614–19.CrossRefGoogle Scholar
Ly-Liu, D, Reinoso-Barbero, F. Immediate postoperative pain can also be predicted by pupillary pain index in children. Br J Anaesth. 2015; 114: 345–6.CrossRefGoogle ScholarPubMed
Sabourdin, N, Del Bove, L, Louvet, N, Luzon-Chetrit, S, Tavernier, B, Constant, I. Relationship between pre-incision Pupillary Pain Index and post-incision heart rate and pupillary diameter variation in children. Paediatr Anaesth. 2021; 31: 1121–8.CrossRefGoogle ScholarPubMed
Vinclair, M, Schilte, C, Roudaud, F, Lavolaine, J, Francony, G, Bouzat, P, et al. Using Pupillary Pain Index to assess nociception in sedated critically ill patients. Anesth Analg. 2019; 129: 1540–6.CrossRefGoogle ScholarPubMed
Macchini, E, Bertelli, A, Bogossian, EG, Annoni, F, Minini, A, Quispe Cornejo, A, et al. Pain pupillary index to prognosticate unfavorable outcome in comatose cardiac arrest patients. Resuscitation. 2022; 176: 125–31.CrossRefGoogle ScholarPubMed
Charier, D, Vogler, M, Zantor, D, Pichot, V, Baltar, A, Courbon, M, et al. Assessing pain in the postoperative period: Analgesia nociception index vs pupillometry. Brit J Anaesth. 2019; 123: 322–7.CrossRefGoogle Scholar
Charier, DJ, Zantour, D, Pichot, V, Chouchou, F, Barthelemy, JM, Roche, F, et al. Assessing pain using the variation coefficient of pupillary diameter. J Pain. 2017; 18: 1346–53.CrossRefGoogle ScholarPubMed
Gregoire, C, Charier, D, de Bergeyck, R, Mouraux, A, Van Ouytsel, F, Lambert, R, et al. Comparison between pupillometry and numeric pain rating scale for pain assessments in communicating adult patients in the emergency department. Eur J Pain. 2023; 27: 952–60.CrossRefGoogle ScholarPubMed
Lynch, TJ, Siminoff, R, Podolsky, R, Adler, MW. Morphine-induced pupillary fluctuations in the rat: Correlations with EEG and respiratory changes. J Ocul Pharmacol. 1985; 1: 255–61.CrossRefGoogle ScholarPubMed
Murray, RB, Adler, MW, Korczyn, AD. The pupillary effects of opioids. Life Sci. 1983; 33: 495509.CrossRefGoogle ScholarPubMed
Bokoch, MP, Behrends, M, Neice, A, Larson, MD. Fentanyl, an agonist at the mu opioid receptor, depresses pupillary unrest. Auton Neurosci. 2015; 189: 6874.CrossRefGoogle ScholarPubMed
Neice, A, Ma, T, Chang, K. Relationship between age, sex and pupillary unrest. J Clin Monit Comput. 2022; 36: 1897–901.CrossRefGoogle ScholarPubMed
Stark, L. Stability, oscillations, and noise in the human pupil servomechanism. Bol Inst Estud Med Biol Univ Nac Auton Mex. 1963; 21: 201–22.Google ScholarPubMed
Turnbull, P, Irani, N, Lim, N, Phillips, J. Origins of pupillary hippus in the autonomic nervous system. Invest Ophthalmol Vis Sci. 2017; 58: 197203.CrossRefGoogle ScholarPubMed
Wilhelm, B, Wilhelm, H, Ludtke, H, Streicher, P, Adler, M. Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep. 1998; 21: 258–65.Google ScholarPubMed
Wilhelm, B, Giedke, H, Ludtke, H, Bittner, E, Hofmann, A, Wilhelm, H. Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. J Sleep Res. 2001; 10: 17.CrossRefGoogle ScholarPubMed
Wilhelm, B, Kellert, R, Schnell, R, Ludtke, H, Petrini, O. Lack of sedative effects after vespertine intake of oxazepam as hypnotic in healthy volunteers. Psychopharmacol Berl. 2009; 205: 679–88.CrossRefGoogle ScholarPubMed
Wilhelm, B, Stuiber, G, Ludtke, H, Wilhelm, H. The effect of caffeine on spontaneous pupillary oscillations. Ophthalmic Physiol Opt. 2014; 34: 7381.CrossRefGoogle ScholarPubMed
Wilhelm, BJ, Widmann, A, Durst, W, Heine, C, Otto, G. Objective and quantitative analysis of daytime sleepiness in physicians after night duties. Int J Psychophysiol. 2009; 72: 307–13.CrossRefGoogle ScholarPubMed
Aston-Jones, G, Cohen, JD. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci. 2005; 28: 403–50.CrossRefGoogle ScholarPubMed
Gilzenrat, MS, Nieuwenhuis, S, Jepma, M, Cohen, JD. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn Affect Behav Neurosci. 2010; 10: 252–69.CrossRefGoogle ScholarPubMed
Pome, A, Burr, DC, Capuozzo, A, Binda, P. Spontaneous pupillary oscillations increase during mindfulness meditation. Curr Biol. 2020; 30: R1030R1031.CrossRefGoogle ScholarPubMed
Rubin, R, Abbott, LF, Sompolinsky, H. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity. Proc Natl Acad Sci USA. 2017; 114: E9366E9375.CrossRefGoogle ScholarPubMed
Larson, MD. Effect of ambient light on pupillary reflex dilation during general anesthesia. 26th Pupil Colloquium, Bear Mountain, New York. 2005.Google Scholar
Steriade, M. The Intact and Sliced Brain. Cambridge, MA: MIT Press; 2001.CrossRefGoogle Scholar
Devor, M, Zalkind, V, Fishman, Y, Minert, A. Model of anaesthetic induction by unilateral intracerebral microinjection of GABAergic agonists. Eur J Neurosci. 2016; 43: 846–58.CrossRefGoogle ScholarPubMed
Szabadi, E. Modulation of physiological reflexes by pain: Role of the locus coeruleus. Front Integr Neurosci. 2012; 6: 94.CrossRefGoogle ScholarPubMed
Megemont, M, McBurney-Lin, J, Yang, H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife. 2022; 11: E70510.CrossRefGoogle Scholar
Yu, Y, Koss, MC. Alpha2-adrenoceptors do not mediate reflex mydriasis in rabbits. J Ocul Pharmacol Ther. 2004; 20: 479–88.CrossRefGoogle Scholar
Pickworth, WB, Sharpe, LG. Morphine-induced mydriasis and inhibition of pupillary light reflex and fluctuations in the cat. J Pharmacol Exp Ther. 1985; 234: 603–6.Google ScholarPubMed
Sharpe, LG, Pickworth, WB. Pharmacologic evidence for a tonic muscarinic inhibitory input to the Edinger-Westphal nucleus in the dog. Exp Neurol. 1981; 711: 176–90.Google Scholar
Weight, FF, Salmoiraghi, GC. Responses of spinal cord interneurons to acetylcholine, norepinephrine, and serotonin administered by microelectrophoresis. J Pharmacol Exp Ther. 1966; 1533: 420–7.Google Scholar
Batini, C, Moruzzi, G, Palestini, M, Rossi, GF, Zanchetti, A. Presistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science. 1958; 128: 30–2.CrossRefGoogle ScholarPubMed
Yoshitomi, T, Ito, Y. Double reciprocal innervations in dog iris sphincter and dilator muscles. Invest Ophthalmol Vis Sci. 1986; 27: 8391.Google ScholarPubMed
Yoshitomi, T, Ito, Y, Inomata, H. Adrenergic excitatory and cholinergic inhibitory innervations in the human iris dilator. Exp Eye Res. 1985; 40: 453–9.CrossRefGoogle ScholarPubMed
Santa Cruz Mercado, LA, Liu, R, Bharadwaj, KM, Johnson, JJ, Gutierrez, R, Das, P, et al. Association of intraoperative opioid administration with postoperative pain and opioid use. JAMA Surg. 2023; 158: 854–64.CrossRefGoogle ScholarPubMed
Sabourdin, N, Barrois, J, Louvet, N, Rigouzzo, A, Guye, ML, Dadure, C, et al. Pupillometry-guided intraoperative remifentanil administration versus standard practice influences opioid use: A randomized study. Anesthesiology. 2017; 127: 284–92.CrossRefGoogle ScholarPubMed
Larson, MD. Mechanism of opioid-induced pupillary effects. Clin Neurophysiol. 2008; 119: 1358–64.CrossRefGoogle ScholarPubMed
Berlucchi, G, Morruzzi, G, Salvi, G, Strata, P. Pupil behavior and ocular movements during synchronized and desynchronized sleep. Arch Ital Biol. 1964; 102: 230–44.Google ScholarPubMed
Ichinohe, N, Shoumura, K. Marked miosis caused by deafferenting the oculomotor nuclear complex in the cat. Auton Neurosci. 2001; 94: 42–5.CrossRefGoogle ScholarPubMed
Vaughan, CW, Christie, MJ. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J Physiol. 1997; 498 Pt 2: 463–72.CrossRefGoogle ScholarPubMed
Newsome, DA. Afterimage and pupillary activity following strong light exposure. Vision Res. 1971; 11: 275–88.CrossRefGoogle ScholarPubMed
Behrends, M, Larson, MD, Neice, A, Bokoch, M. Suppression of pupillary unrest by general anesthesia and propofol sedation. J Clin Monit Comput. 2018; 332: 317–23.Google Scholar
Teasdale, G, Jennett, B. Assessment of coma and impaired consciousness: A practical scale. Lancet. 1974; 2: 81–4.Google ScholarPubMed
Wijdicks, EF, Bamlet, WR, Maramattom, BV, Manno, EM, McClelland, RL. Validation of a new coma scale: The FOUR score. Ann Neurol. 2005; 58: 585–93.CrossRefGoogle ScholarPubMed
Brennan, PM, Murray, GD, Teasdale, GM. Simplifying the use of prognostic information in traumatic brain injury. Part 1: The GCS-Pupils score: An extended index of clinical severity. J Neurosurg. 2018; 128: 1612–20.CrossRefGoogle ScholarPubMed
Dowlati, E, Sarpong, K, Kamande, S, Carroll, AH, Murray, J, Wiley, A, et al. Abnormal neurological pupil index is associated with malignant cerebral edema after mechanical thrombectomy in large vessel occlusion patients. Neurol Sci. 2021; 42: 5139–48.CrossRefGoogle ScholarPubMed
Bower, M, Sweidan, A, Xu, J, Stern-Neze, S, Yu, W, Groysman, L. Quantitative pupillometry in the intensive care unit. J Intensive Care Med. 2021; 36: 383–91.CrossRefGoogle ScholarPubMed
Taylor, WR, Chen, JW, Meltzer, H, Gennarelli, TA, Kelbch, C, Knowlton, S, et al. Quantitative pupillometry, a new technology: Normative data and preliminary observations in patients with acute head injury: Technical note.J Neurosurg. 2003; 98: 205–13.CrossRefGoogle ScholarPubMed
Zafar, SF, Suarez, JI. Automated pupillometer for monitoring the critically ill patient: A critical appraisal. J Crit Care. 2014; 29: 599603.CrossRefGoogle ScholarPubMed
Lussier, BL, Erapuram, M, White, JA, Stutzman, SE, Olson, DM. Predictive value of quantitative pupillometry in patients with normal pressure hydrocephalus undergoing temporary CSF diversion. Neurol Sci. 2022; 43: 5377–82.CrossRefGoogle ScholarPubMed
Lussier, BL, Olson, DM, Aiyagari, V. Automated pupillometry in neurocritical care: Research and practice. Curr Neurol Neurosci Rep. 2019; 19: 71.CrossRefGoogle ScholarPubMed
Osman, M, Stutzman, SE, Atem, F, Olson, D, Hicks, AD, Ortega-Perez, S, et al. Correlation of objective pupillometry to midline shift in acute stroke patients. J Stroke Cerebrovasc Dis. 2019; 28: 1902–10.CrossRefGoogle ScholarPubMed
Kim, TJ, Ko, SB. Implication of neurological pupil index for monitoring of brain edema. Acute Crit Care. 2018; 33: 5760.CrossRefGoogle ScholarPubMed
Packiasabapathy, S, Rangasamy, V, Sadhasivam, S. Pupillometry in perioperative medicine: A narrative review. Can J Anaesth. 2021; 68: 566–78.CrossRefGoogle ScholarPubMed
Chen, JW, Gombart, ZJ, Rogers, S, Gardiner, SK, Cecil, S, Bullock, RM. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the neurological pupil index. Surg Neurol Int. 2011; 2: 82.CrossRefGoogle ScholarPubMed
Olson, DM, Fishel, M. The use of automated pupillometry in critical care. Crit Care Nurs Clin North Am. 2016; 28: 101–7.CrossRefGoogle ScholarPubMed
Sandroni, C, Cavallaro, F, Callaway, CW, D’Arrigo, S, Sanna, T, Kuiper, MA, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation. 2015; 84: 1324–38.Google Scholar
Sandroni, C, Nolan, JP, Andersen, LW, Bottiger, BW, Cariou, A, Cronberg, T, et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Intensive Care Med. 2022; 48: 261–9.CrossRefGoogle ScholarPubMed
Suys, T, Bouzat, P, Marques-Vidal, P, Sala, N, Payen, JF, Rossetti, AO, et al. Automated quantitative pupillometry for the prognostication of coma after cardiac arrest. Neurocrit Care. 2014; 21: 300–8.CrossRefGoogle ScholarPubMed
Riker, RR, Sawyer, ME, Fischman, VG, May, T, Lord, C, Eldridge, A, et al. Neurological pupil index and pupillary light reflex by pupillometry predict outcome early after cardiac arrest. Neurocrit Care. 2020; 32: 152–61.CrossRefGoogle ScholarPubMed
Tamura, T, Namiki, J, Sugawara, Y, Sekine, K, Yo, K, Kanaya, T, et al. Early outcome prediction with quantitative pupillary response parameters after out-of-hospital cardiac arrest: A multicenter prospective observational study. PLoS One. 2020; 15: e0228224.CrossRefGoogle ScholarPubMed
Tamura, T, Namiki, J, Sugawara, Y, Sekine, K, Yo, K, Kanaya, T, et al. Quantitative assessment of pupillary light reflex for early prediction of outcomes after out-of-hospital cardiac arrest: A multicentre prospective observational study. Resuscitation. 2018; 131: 108–13.CrossRefGoogle ScholarPubMed
Oddo, M, Sandroni, C, Citerio, G, Miroz, JP, Horn, J, Rundgren, M, et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: An international prospective multicenter double-blinded study. Intensive Care Med. 2018; 44: 2102–11.CrossRefGoogle ScholarPubMed
Godau, J, Bharad, K, Rosche, J, Nagy, G, Kastner, S, Weber, K, et al. Automated pupillometry for assessment of treatment success in nonconvulsive status epilepticus. Neurocrit Care. 2022; 36: 148–56.CrossRefGoogle ScholarPubMed
Yan, S, Tu, Z, Lu, W, Zhang, Q, He, J, Li, Z, et al. Clinical utility of an automated pupillometer for assessing and monitoring recipients of liver transplantation. Liver Transpl. 2009; 15: 1718–27.CrossRefGoogle ScholarPubMed
Miroz, JP, Ben-Hamouda, N, Bernini, A, Romagnosi, F, Bongiovanni, F, Roumy, A, et al. Neurological pupil index for early prognostication after venoarterial extracorporeal membrane oxygenation. Chest. 2020; 157: 1167–74.CrossRefGoogle ScholarPubMed
Lee, H, Choi, SH, Park, B, Hong, YH, Lee, HB, Jeon, SB. Quantitative assessments of pupillary light reflexes in hospital-onset unresponsiveness. BMC Neurol. 2021; 21: 234.CrossRefGoogle ScholarPubMed
Ong, C, Hutch, M, Barra, M, Kim, A, Zafar, S, Smirnakis, S. Effects of osmotic therapy on pupil reactivity: Quantification using pupillometry in critically ill neurologic patients. Neurocrit Care. 2019; 30: 307–15.CrossRefGoogle Scholar
Peluso, L, Ferlini, L, Talamonti, M, Ndieugnou Djangang, N, Gouvea Bogossian, E, Menozzi, M, et al. Automated pupillometry for prediction of electroencephalographic reactivity in critically ill patients: A prospective cohort study. Front Neurol. 2022; 13: 867603.CrossRefGoogle ScholarPubMed
Peluso, L, Oddo, M, Sandroni, C, Citerio, G, Taccone, FS. Early neurological pupil index to predict outcome after cardiac arrest. Intensive Care Med. 2022; 48: 496–7.CrossRefGoogle ScholarPubMed
Hutchinson, J. Notes on the symptom – significance of different states of the pupil. Brain. 1878; 1: 113.CrossRefGoogle Scholar
Ropper, AH. The opposite pupil in herniation. Neurology. 1990; 40: 1707–9.CrossRefGoogle ScholarPubMed
Manley, GT, Larson, MD. Infrared pupillometry during uncal herniation. J Neurosurg Anesthesiol. 2002; 14: 223–8.CrossRefGoogle ScholarPubMed
El Ahmadieh, TY, Bedros, N, Stutzman, SE, Nyancho, D, Venkatachalam, AM, MacAllister, M, et al. Automated pupillometry as a triage and assessment tool in patients with traumatic brain injury. World Neurosurg. 2021; 145: e163e169.CrossRefGoogle ScholarPubMed
Traylor, JI, El Ahmadieh, TY, Bedros, NM, Al Adli, N, Stutzman, SE, Venkatachalam, AM, et al. Quantitative pupillometry in patients with traumatic brain injury and loss of consciousness: A prospective pilot study. J Clin Neurosci. 2021; 91: 8892.CrossRefGoogle ScholarPubMed
Ciuffreda, KJ, Joshi, NR, Truong, JQ. Understanding the effects of mild traumatic brain injury on the pupillary light reflex. Concussion. 2017; 2: CNC36.CrossRefGoogle ScholarPubMed
Helmy, A, Kirkpatrick, PJ, Seeley, HM, Corteen, E, Menon, DK, Hutchinson, PJ. Fixed, dilated pupils following traumatic brain injury: Historical perspectives, causes and ophthalmological sequelae. Acta Neurochir Suppl. 2012; 114: 295–9.CrossRefGoogle ScholarPubMed
Truong, JQ, Ciuffreda, KJ. Comparison of pupillary dynamics to light in the mild traumatic brain injury (mTBI) and normal populations. Brain Inj. 2016; 30: 1378–89.Google ScholarPubMed
Truong, JQ, Ciuffreda, KJ. Quantifying pupillary asymmetry through objective binocular pupillometry in the normal and mild traumatic brain injury (mTBI) populations. Brain Inj. 2016; 30: 1372–7.Google ScholarPubMed
Condemi, A, Donatiello, G, Mauro, M, Spazzolini, A, Zocchi, C. Importance of pupillary and photomotor reflexes in cardiac resuscitation. Minerva Anestesiol. 1981; 47: 885–90.Google ScholarPubMed
Obinata, H, Yokobori, S, Shibata, Y, Takiguchi, T, Nakae, R, Igarashi, Y, et al. Early automated infrared pupillometry is superior to auditory brainstem response in predicting neurological outcome after cardiac arrest. Resuscitation. 2020; 154: 7784.CrossRefGoogle ScholarPubMed
Pansell, J, Hack, R, Rudberg, P, Bell, M, Cooray, C. Can quantitative pupillometry be used to screen for elevated intracranial pressure? A retrospective cohort study. Neurocrit Care. 2022; 37: 531–7.Google ScholarPubMed
Paramanathan, S, Grejs, AM, Soreide, E, Duez, CHV, Jeppesen, AN, Reinertsen, AJ, et al. Quantitative pupillometry in comatose out-of-hospital cardiac arrest patients: A post-hoc analysis of the TTH48 trial. Acta Anaesthesiol Scand. 2022; 66: 880–6.CrossRefGoogle ScholarPubMed
Shi, L, Xu, J, Wang, J, Zhang, M, Liu, F, Khan, ZU, et al. Automated pupillometry helps monitor the efficacy of cardiopulmonary resuscitation and predict return of spontaneous circulation. Am J Emerg Med. 2021; 49: 360–6.CrossRefGoogle ScholarPubMed
Warren, A, McCarthy, C, Andiapen, M, Crouch, M, Finney, S, Hamilton, S, et al. Early quantitative infrared pupillometry for prediction of neurological outcome in patients admitted to intensive care after out-of-hospital cardiac arrest. Br J Anaesth. 2022; 128: 849–56.CrossRefGoogle ScholarPubMed
Ben-Hamouda, N, Ltaief, Z, Kirsch, M, Novy, J, Liaudet, L, Oddo, M, et al. Neuroprognostication under ECMO after cardiac arrest: Are classical tools still performant? Neurocrit Care. 2022; 37: 293301.CrossRefGoogle ScholarPubMed
Nyholm, B, Obling, LER, Hassager, C, Grand, J, Moller, JE, Othman, MH, et al. Specific thresholds of quantitative pupillometry parameters predict unfavorable outcome in comatose survivors early after cardiac arrest. Resusc Plus. 2023; 14: 100399.CrossRefGoogle ScholarPubMed
Levy, PD, Ye, H, Compton, S, Chan, PS, Larkin, GL, Welch, RD. Factors associated with neurologically intact survival for patients with acute heart failure and in-hospital cardiac arrest. Circ Heart Fail. 2009; 2: 572–81.CrossRefGoogle ScholarPubMed
Longstreth, WT Jr., Diehr, P, Inui, TS, Jorgensen, EO, Malchow-Moller, AM. Prediction of awakening after out-of-hospital cardiac arrest. N Engl J Med. 1983; 308: 1378–82.CrossRefGoogle ScholarPubMed
Goetting, MG, Contreras, E. Systemic atropine administration during cardiac arrest does not cause fixed and dilated pupils. Ann Emerg Med. 1991; 20: 55–7.CrossRefGoogle Scholar
Rajajee, V, Muehlschlegel, S, Wartenberg, KE, Alexander, SA, Busl, KM, Chou, SHY, et al. Guidelines for neuroprognostication in comatose adult survivors of cardiac arrest. Neurocrit Care. 2023; 38: 533–63.CrossRefGoogle ScholarPubMed
Panchal, AR, Bartos, JA, Cabanas, JG, Donnino, MW, Drennan, IR, Hirsch, KG, et al. Part 3: Adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 142: S366S468.CrossRefGoogle ScholarPubMed
Monk, A, Patil, S. Infrared pupillometry to help predict neurological outcome for patients achieving return of spontataneous circulation following cardiac arrest: A systematic review protocol. Syst Rev. 2019; 8: 286. Published online.CrossRefGoogle ScholarPubMed
Menozzi, M, Oddo, M, Peluso, L, Dessartaine, G, Sandroni, C, Citerio, G, et al. Early neurological pupil index assessment to predict outcome in cardiac arrest patients undergoing extracorporeal membrane oxygenation. ASAIO J. 2022; 68: e118e120.CrossRefGoogle ScholarPubMed
Kondziella, D. Neuroprognostication after cardiac arrest: What the cardiologist should know. Eur Heart J Acute Cardiovasc Care. 2023; 12: 550–8.CrossRefGoogle ScholarPubMed
Rossetti, AO, Rabinstein, AA, Oddo, M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016; 15: 597609.CrossRefGoogle ScholarPubMed
Slovis, JC, Bach, A, Beaulieu, F, Zuckerberg, G, Topjian, A, Kirschen, MP. Neuromonitoring after pediatric cardiac arrest: Cerebral physiology and injury stratification. Neurocrit Care. 2024; 40: 99115.CrossRefGoogle ScholarPubMed
Berg, KM, Cheng, A, Panchal, AR, Topjian, AA, Aziz, K, Bhanji, F, et al. Part 7: Systems of care: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 14216 Suppl. 2: S580S604.Google Scholar
Binnion, PF, McFarland, RJ. The relationship between cardiac massage and pupil size in cardiac arrest in dogs. Cardiovasc Res. 1968; 23: 247–51.Google Scholar
Sobotka, P, Gebert, E. Effect of complete brain ischaemia on pupillary changes. Acta Anaesthesiol Scand. 1972; 16: 112–16.CrossRefGoogle ScholarPubMed
Steen-Hansen, JE, Hansen, NN, Vaagenes, P, Schreiner, B, Longstreth, WT Jr., Diehr, P, et al. Pupil size and light reactivity during cardiopulmonary resuscitation: A clinical study. Crit Care Med. 1988; 16: 6970.CrossRefGoogle ScholarPubMed
Kim, DW, Jo, YH, Park, SM, Lee, DK, Jang, D. Neurological pupil index during cardiopulmonmary resuscitation is associated with admission to ICU in non-traumatic out-of-hospital cardiac arrest patients. Signa Vitae. 2023; 19: 4854.Google Scholar
Merchant, RM, Topjian, AA, Panchal, AR, Cheng, A, Aziz, K, Berg, KM, et al. Part 1: Executive summary: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 142 Suppl. 2: S337S357.CrossRefGoogle ScholarPubMed
Behrends, M, Niemann, CU, Larson, MD. Infrared pupillometry to detect the light reflex during cardiopulmonary resuscitation: A case series. Resuscitation. 2012; 83: 1223–8.CrossRefGoogle ScholarPubMed
Bremner, FD, Smith, SE. Bilateral tonic pupils: Holmes Adie syndrome or generalized neuropathy? Br J Ophthalmol. 2007; 91: 1620–3.CrossRefGoogle ScholarPubMed
Ang, JL, Collis, S, Dhillon, B, Cackett, P. The eye in forensic medicine: A narrative review. Asia Pac J Ophthalmol Phila. 2021; 10: 486–94.Google ScholarPubMed
Olgun, G, Newey, CR, Ardelt, A. Pupillometry in brain death: Differences in pupillary diameter between paediatric and adult subjects. Neurol Res. 2015; 37: 945–50.CrossRefGoogle ScholarPubMed
Kondziella, D, Bender, A, Diserens, K, van Erp, W, Estraneo, A, Formisano, R, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020; 275: 741–56.Google Scholar
Vassilieva, A, Olsen, MH, Peinkhofer, C, Knudsen, GM, Kondziella, D. Automated pupillometry to detect command following in neurological patients: A proof-of-concept study. PeerJ. 2019; 7: e6929.CrossRefGoogle ScholarPubMed
Jakobsen, EW, Nersesjan, V, Albrechtsen, SS, Othman, MH, Amiri, M, Knudsen, NV, et al. Brimonidine eye drops reveal diminished sympathetic pupillary tone in comatose patients with brain injury. Acta Neurochir (Wien). 2023; 165: 1483–94.CrossRefGoogle ScholarPubMed
Sharpe, LG, Pickworth, WB. Opposite pupillary size effects in the cat and dog after microinjections of morphine, normorphine and clonidine in the Edinger-Westphal nucleus. Brain Res Bull. 1985; 15: 329–33.CrossRefGoogle Scholar
Rollins, MD, Feiner, JR, Lee, JM, Shah, S, Larson, M. Pupillary effects of high-dose opioid quantified with infrared pupillometry. Anesthesiology. 2014; 121: 1037–44.CrossRefGoogle ScholarPubMed
Loewenfeld, IE. The iris as pharmacologic indicator. I. Effect of physostigmine and of pilocarpine on pupillary movements in normal man.Arch Ophthalmol. 1963; 70: 4251.CrossRefGoogle ScholarPubMed
Weinhold, L, Bigelow, G. Opioid miosis: Effects of lighting intensity and monocular and binocular exposure. Drug Alcohol Depend. 1993; 31: 177–81.CrossRefGoogle ScholarPubMed
Weinhold, LL, Bigelow, GE. Factors influencing assessment of opioid miosis in humans. NIDA Res Monogr. 1990; 105: 419–20.Google ScholarPubMed
Pula, JH, Kao, AM, Kattah, JC. Neuro-ophthalmologic side-effects of systemic medications. Curr Opin Ophthalmol. 2013; 24: 540–9.CrossRefGoogle ScholarPubMed
Pattinson, K. Opioids and the control of respiration. Br J Anaesth. 2008; 100: 747–58.CrossRefGoogle ScholarPubMed
Kharasch, ED, Francis, A, London, A, Frey, K, Kim, T, Blood, J. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimal and noninvasive probes for hepatic and first-pass CYP3A induction. Clin Pharmacol Ther. 2005; 90: 100–8.Google Scholar
Kharasch, ED, Hoffer, C, Walker, A, Sheffels, P. Disposition and miotic effects of oral alfentanil: A potential noninvasive probe for first-pass cytochrome P4503A activity. Clin Pharmacol Ther. 2003; 73: 199208.CrossRefGoogle ScholarPubMed
Kharasch, ED, Hoffer, C, Whittington, D. Influence of age on the pharmacokinetics and pharmacodynamics of oral transmucosal fentanyl citrate. Anesthesiology. 2004; 101: 738–43.CrossRefGoogle ScholarPubMed
Kharasch, ED, Hoffer, C, Whittington, D, Sheffels, P. Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther. 2003; 74: 543–54.CrossRefGoogle ScholarPubMed
Kharasch, ED, Walker, A, Hoffer, C, Sheffels, P. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3 A activity: Noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther. 2004; 76: 452–66.CrossRefGoogle ScholarPubMed
Kharasch, ED, Walker, A, Hoffer, C, Sheffels, P. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimally invasive and noninvasive probes for hepatic and first-pass CYP3A activity. J Clin Pharmacol. 2005; 45: 1187–97.CrossRefGoogle ScholarPubMed
Ghodse, AH, Bewley, TH, Kearney, MK, Smith, SE. Mydriatic response to topical naloxone in opiate abusers. Br J Psychiatry. 1986; 148: 44–6.CrossRefGoogle ScholarPubMed
Larson, MD. Action of narcotics on the pupil. Anaesthesia. 1987; 42: 566.CrossRefGoogle ScholarPubMed
Duggan, AW, North, RA. Electrophysiology of opioids. Pharmacol Rev. 1983; 35: 219–81.Google ScholarPubMed
Semmlow, J, Hansmann, D, Stark, L. Variation in pupillomotor responsiveness with mean pupil size. Vision Res. 1975; 15: 8590.CrossRefGoogle ScholarPubMed
Kollars, JP, Larson, MD. Tolerance to miotic effects of opioids. Anesthesiology. 2005; 1023: 701.CrossRefGoogle Scholar
Lee, L, Caplan, R, Stephens, L, Posner, K, Terman, G, Voepel-Lewis, T, et al. Postoperative opioid-induced respiratory depression: A closed claims analysis. Anesthesiology. 2015; 122: 659–65.CrossRefGoogle ScholarPubMed
Solhaug, V, Molden, E. Individual variability in clinical effect and tolerability of opioid analgesics: Importance of drug interactions and pharmacogenetics. Scand J Pain. 2017; 17: 193200.CrossRefGoogle ScholarPubMed
Du, R, Meeker, M, Bacchetti, P, Larson, MD, Holland, MC, Manley, GT. Evaluation of the portable infrared pupillometer. Neurosurgery. 2005; 57: 198203.CrossRefGoogle ScholarPubMed
McKay, RE, Larson, MD. Detection of opioid effect with pupillometry. Auton Neurosci. 2021; 235: 102869.CrossRefGoogle ScholarPubMed
Vaughan, CW, Ingram, SL, Connor, MA, Christie, MJ. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997; 390: 611–14.CrossRefGoogle ScholarPubMed
Aghajanian, GK, Wang, YY. Common alpha 2- and opiate effector mechanisms in the locus coeruleus: Intracellular studies in brain slices. Neuropharmacology. 1987; 26: 793–9.CrossRefGoogle ScholarPubMed
McKay, RE, Neice, AE, Larson, MD. Pupillary unrest in ambient light and prediction of opioid responsiveness: Case report on its utility in the management of 2 patients with challenging acute pain conditions. A A Pract. 2018; 1010: 279–82.Google Scholar
Lundy, J. Clinical Anesthesia: A Manual of Clinical Anesthesiology. Philadelphia, PA: W. B. Saunders; 1942.Google Scholar
McKay, RE, Kohn, MA, Larson, MD. Pupillary unrest, opioid intensity, and the impact of environmental stimulation on respiratory depression. J Clin Monit Comput. 2022; 36: 473–82.Google ScholarPubMed
Borghjerg, F, Nielsen, K, Franks, J. Experimental pain stimulates respiration and attenuates morphine-induced respiratory depression: A controlled study in human volunteers. Pain. 1996; 64: 123–8.Google Scholar
Neice, AE, Behrends, M, Bokoch, MP, Seligman, KM, Conrad, NM, Larson, MD. Prediction of opioid analgesic efficacy by measurement of pupillary unrest. Anesth Analg. 2017; 124: 915–21.CrossRefGoogle ScholarPubMed
Smith, JD, Ichinose, LY, Masek, GA, Watanabe, T, Stark, L. Midbrain single units correlating with pupil response to light. Science. 1968; 162: 1302–3.CrossRefGoogle ScholarPubMed
Behrends, M, Larson, MD. Measurements of pupillary unrest using infrared pupillometry fail to detect changes in pain intensity in patients after surgery: A prospective observational study. Can J Anesth. 2024; published online ahead of print: https://pubmed.ncbi.nlm.nih.gov/38504035/CrossRefGoogle Scholar
Eisenach, J, Curry, R, Aschenbrenner, C, Coghill, R, Houle, T. Pupil responses and pain ratings to heat stimuli: Reliability and effects of expectations and a conditioning pain stimulus. J Neurosci Methods. 2017; 279: 52–9.CrossRefGoogle Scholar
Smith, SE, Smith, SA, Brown, PM, Fox, C, Sonksen, PH. Pupillary signs in diabetic autonomic neuropathy. Brit Med J. 1978; 2: 924–7.CrossRefGoogle ScholarPubMed
Kaeser, PF, Kawasaki, A. Disorders of pupillary structure and function. Neurol Clin. 28: 657–77.Google Scholar
Thompson, HS, Piley, SF. Unequal pupils. A flow chart for sorting out the anisocorias. Surv Ophthalmol. 1976; 21: 45–8.CrossRefGoogle ScholarPubMed
Czarnecki, JS, Pilley, SF, Thompson, HS. The analysis of anisocoria. The use of photography in the clinical evaluation of unequal pupils. Can J Ophthalmol. 1979; 14: 297302.Google ScholarPubMed
Antonio-Santos, AA, Santo, RN, Eggenberger, ER. Pharmacological testing of anisocoria. Expert Opin Pharmacother. 2005; 6: 2007–13.CrossRefGoogle ScholarPubMed
Stirt, JA, Shuptrine, JR, Sternick, CS, Korbon, GA. Anisocoria after anaesthesia. Can Anaesth Soc J. 1985; 32: 422–4.CrossRefGoogle ScholarPubMed
Prielipp, RC. Unilateral mydriasis after induction of anaesthesia. Can J Anaesth. 1994; 41: 140–3.CrossRefGoogle ScholarPubMed
Rubin, MM, Sadoff, RS, Cozzi, GM. Postoperative unilateral mydriasis due to phenylephrine: A case report. J Oral Maxillofac Surg. 1990; 48: 621–3.CrossRefGoogle ScholarPubMed
Sitzman, BT, Bogdonoff, DL, Bleck, TP, Spiekermann, BF, Chang, CW. Postoperative anisocoria: Neurogenic or phenylephrine induced? A rapid diagnostic test. Anesth Analg. 1996; 83: 633–5.CrossRefGoogle ScholarPubMed
Lin, YC. Anisocoria from transdermal scopolamine. Paediatr Anaesth. 2001; 11: 626–7.CrossRefGoogle ScholarPubMed
Al-Holou, SN, Lipsky, SN, Wasserman, BN. Don’t sweat the blown pupil: Anisocoria in patients using qbrexza. Ophthalmology. 2020; 127: 1381.CrossRefGoogle ScholarPubMed
Holmgreen, WC, Baddour, HM, Tilson, HB. Unilateral mydriasis during general anesthesia. J Oral Surg. 1979; 37: 740–2.Google ScholarPubMed
D’Souza, MG, Hadzic, A, Wider, T. Unilateral mydriasis after nasal reconstruction surgery. Can J Anaesth. 2000; 47: 1119–21.CrossRefGoogle ScholarPubMed
Gibson, BE, Stanley, RJ, Lanier, WL. Prolonged unilateral mydriasis after nasal septal reconstruction. Anesth Analg. 1987; 66: 197–8.Google ScholarPubMed
Jindal, M, Sharma, N, Parekh, N. Intraoperative dilated pupil during nasal polypectomy. Eur Arch Otorhinolaryngol. 2009; 266: 1035–7.CrossRefGoogle ScholarPubMed
Bhatti, MT. Neuro-ophthalmic complications of endoscopic sinus surgery. Curr Opin Ophthalmol. 2007; 18: 450–8.CrossRefGoogle ScholarPubMed
Bhatti, MT, Stankiewicz, JA. Ophthalmic complications of endoscopic sinus surgery. Surv Ophthalmol. 2003; 48: 389402.CrossRefGoogle ScholarPubMed
Boynes, SG, Echeverria, Z, Abdulwahab, M. Ocular complications associated with local anesthesia administration in dentistry. Dent Clin North Am. 54: 677–86.Google Scholar
Horowitz, J, Almog, Y, Wolf, A, Buckman, G, Geyer, O. Ophthalmic complications of dental anesthesia: Three new cases. J Neuroophthalmol. 2005; 25: 95100.Google ScholarPubMed
Penarrocha-Diago, M, Sanchis-Bielsa, JM. Ophthalmologic complications after intraoral local anesthesia with articaine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000; 90: 21–4.CrossRefGoogle ScholarPubMed
Mason, JD, Haynes, RJ, Jones, NS. Interpretation of the dilated pupil during endoscopic sinus surgery. J Laryngol Otol. 1998; 112: 622–7.CrossRefGoogle ScholarPubMed
Hyams, SW. Oculomotor palsy following dental anesthesia. Arch Ophthalmol. 1976; 94: 1281–2.CrossRefGoogle ScholarPubMed
Rene, C, Rose, GE, Lenthall, R, Moseley, I. Major orbital complications of endoscopic sinus surgery. Br J Ophthalmol. 2001; 85: 598603.CrossRefGoogle ScholarPubMed
Rayatt, S, Khanna, A. Unilateral mydriasis during blepharoplasty. Br J Plast Surg. 2001; 54: 648.CrossRefGoogle ScholarPubMed
Perlman, JP, Conn, H. Transient internal ophthalmoplegia during blepharoplasty. A report of three cases.Ophthal Plast Reconstr Surg. 1991; 7: 141–3.CrossRefGoogle ScholarPubMed
Bremner, F. Pupil evaluation as a test for autonomic disorders. Clin Auton Res. 2009; 192: 88101.CrossRefGoogle Scholar
Emelifeonwu, JA, Reid, K, Rhodes, JK, Myles, L. Saved by the pupillometer! – A role for pupillometry in the acute assessment of patients with traumatic brain injuries? Brain Inj. 2018; 32: 675–7.CrossRefGoogle ScholarPubMed
Larson, MD, Muhiudeen, I. Pupillometric analysis of the “absent light reflex.” Arch Neurol. 1995; 52: 369–72.CrossRefGoogle ScholarPubMed
Maas, MB, Naidech, AM, Batra, A, Chou, SH, Bleck, TP. Comment on “Can quantitative pupillometry be used to screen for elevated intracranial pressure”? A retrospective cohort study. Neurocrit Care. 2022; 37: 597–8.CrossRefGoogle ScholarPubMed
Nyholm, B, Obling, L, Hassager, C, Grand, J, Moller, J, Othman, M, et al. Superior reproducibility, and repeatability in automated quantitative pupillometry compared to standard manual assessment, and quantitative pupillary response parameters present high reliability in critically ill cardiac patients. PLoS One. 2022; 17: e0272303.CrossRefGoogle ScholarPubMed
Blandino Ortiz, A, Higuera Lucas, J. Usefulness of quantitative pupillometry in the intensive care unit. Med Intensiva England. 2022; 46: 273–6.Google ScholarPubMed
Blandino Ortiz, A, Higuera Lucas, J, Soriano, C, de Pablo, R. Quantitative pupillometry as a tool to predict post-cardiac arrest neurological outcome in target temperature patients. Med Intensiva England. 2022; 4: 415.CrossRefGoogle Scholar
Bouyaknouden, D, Peddada, TN, Ravishankar, N, Fatima, S, Fong-Isariyawongse, J, Gilmore, EJ, et al. Neurological prognostication after hypoglycemic coma: Role of clinical and EEG findings. Neurocrit Care. 2022; 37: 273–80.CrossRefGoogle ScholarPubMed
Campos, YA, Rana, P, Reyes, RG, Mazhar, K, Stutzman, SE, Atem, F, et al. Relationship between automated pupillometry measurements and ventricular volume in patients with aneurysmal subarachnoid hemorrhage. J Neurosci Nurs. 2022; 54: 166–70.CrossRefGoogle ScholarPubMed
Giamarino, K, Reynolds, SS. Pupillometry in neurocritical care. Nursing. 2022; 52: 41–4.CrossRefGoogle ScholarPubMed
Kamal, A, Ahmed, KM, Venkatachalam, AM, Osman, M, Aoun, SG, Aiyagari, V, et al. Pilot study of neurologic pupil index as a predictor of external ventricular drain clamp trial failure after subarachnoid hemorrhage. World Neurosurg. 2022; 164: 27.CrossRefGoogle ScholarPubMed
Kim, JG, Shin, H, Lim, TH, Kim, W, Cho, Y, Jang, BH, et al. Efficacy of quantitative pupillary light reflex for predicting neurological outcomes in patients treated with targeted temperature management after cardiac arrest: A systematic review and meta-analysis. Medicina Kaunas. 2022; 58: 804.CrossRefGoogle ScholarPubMed
Wang, CH, Wu, CY, Liu, CC, Hsu, TC, Liu, MA, Wu, MC, et al. Neuroprognostic accuracy of quantitative versus standard pupillary light reflex for adult postcardiac arrest patients: A systematic review and meta-analysis. Crit Care Med. 2021; 49: 1790–9.CrossRefGoogle ScholarPubMed
Thakur, B, Nadim, H, Atem, F, Stutzman, SE, Olson, DM. Dilation velocity is associated with Glasgow Coma Scale scores in patients with brain injury. Brain Inj. 2021; 35: 114–18.CrossRefGoogle ScholarPubMed
Sandroni, C, Citerio, G, Taccone, FS. Automated pupillometry in intensive care. Intens Care Med. 2022; 48: 1467–70.CrossRefGoogle ScholarPubMed
Lenga, P, Kuhlwein, D, Schonenberger, S, Neumann, JO, Unterberg, AW, Beynon, C. The use of quantitative pupillometry in brain death determination: Preliminary findings. Neurol Sci. 2023. Accession Number: 38082049. Published online.CrossRefGoogle Scholar
Kelvin, L. Popular Lectures and Addresses, Vol. 1. London: Macmillan; 1889.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Merlin D. Larson, University of California, San Francisco
  • Book: A Practical Guide to Portable Pupillometry
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009436274.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Merlin D. Larson, University of California, San Francisco
  • Book: A Practical Guide to Portable Pupillometry
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009436274.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Merlin D. Larson, University of California, San Francisco
  • Book: A Practical Guide to Portable Pupillometry
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009436274.018
Available formats
×