Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T08:07:16.176Z Has data issue: false hasContentIssue false

15 - Irrotational Faraday waves on a viscous fluid

Published online by Cambridge University Press:  09 October 2009

Daniel Joseph
Affiliation:
Georgia Institute of Technology
Toshio Funada
Affiliation:
Numazu College of Technology
Jing Wang
Affiliation:
University of Minnesota
Get access

Summary

When a vessel containing liquid is made to vibrate vertically with constant frequency and amplitude, a pattern of standing waves on the gas–liquid surface can appear. For some combinations of frequency and amplitude, waves appear; for other combinations the free surface remains flat. These waves were first studied in the experiments of Faraday (1831), who noticed that the frequency of the liquid vibrations was only half that of the vessel. Nowadays, this would be described as a symmetry-breaking vibration of a type that characterized the motion of a simple pendulum subjected to a vertical oscillation of its purpose.

The first mathematical study of Faraday waves are due to Rayleigh (1883a, 1883b) but the first definitive study is due to Benjamin and Ursell (1954; hereafter BU) who remark that “The present work has been made possible by the development of the theory of Mathieu functions.”

Faraday's problem is a rich source of problems in pattern formation, bifurcation, chaos, and other topics within the framework of fluid mechanics applications in the modern theory of dynamical system. Under the excitation of different parameters governing the Faraday system, different patterns, stripes, squares, hexagons, and time-dependent states can be observed. These features have spawned a large recent literature on Faraday waves. The experiments of Ciliberto and Gollub (1985) and Simonelli and Gollub (1989) on chaos, symmetry, and mode interactions are often cited.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×