Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T07:16:38.002Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  04 November 2017

Grant Walker
Affiliation:
University of Manchester
Reginald M. W. Wood
Affiliation:
University of Manchester
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J. F., Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180–214.Google Scholar
[2] J. F., Adams, J., Gunawardena and H., Miller, The Segal conjecture for elementary abelian 2-groups, Topology 24 (1985), 435–460.
[3] J. F., Adams and H. R., Margolis, Sub-Hopf algebras of the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 76 (1974), 45–52.Google Scholar
[4] J., Adem, The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720–726.Google Scholar
[5] J., Adem, The relations on Steenrod powers of cohomology classes, in Algebraic Geometry and Topology, a symposium in honour of S. Lefschetz, 191–238, Princeton Univ. Press, Princeton, NJ, 1957.
[6] J. L., Alperin and Rowen B., Bell, Groups and Representations, Graduate Texts in Mathematics 162, Springer-Verlag, New York, 1995.
[7] M. A., Alghamdi, M. C., Crabb and J. R., Hubbuck, Representations of the homology of BV and the Steenrod algebra I, Adams Memorial Symposium on Algebraic Topology vol. 2, London Math. Soc. Lecture Note Ser. 176, Cambridge Univ. Press 1992, 217–234.
[8] D. J., Anick and F. P., Peterson, A 2-annihilated elements in H (R P 2), Proc. Amer. Math. Soc. 117 (1993), 243–250.Google Scholar
[9] D., Arnon, Monomial bases in the Steenrod algebra, J. Pure App. Algebra 96 (1994), 215–223.Google Scholar
[10] D., Arnon, Generalized Dickson invariants, Israel J. Maths 118 (2000), 183–205.Google Scholar
[11] M. F., Atiyah and F., Hirzebruch, Cohomologie-Operationen und charakteristische Klassen, Math. Z. 77 (1961), 149–187.Google Scholar
[12] Shaun V., Ault, Relations among the kernels and images of Steenrod squares acting on right A -modules, J. Pure. Appl. Algebra 216, (2012), no. 6, 1428–1437.Google Scholar
[13] Shaun, Ault, Bott periodicity in the hit problem, Math. Proc. Camb. Phil. Soc. 156 (2014), no. 3, 545–554.Google Scholar
[14] Shaun V., Ault and William, Singer, On the homology of elementary Abelian groups as modules over the Steenrod algebra, J. Pure App. Algebra 215 (2011), 2847–2852.Google Scholar
[15] M. G., Barratt and H., Miller, On the anti-automorphism of the Steenrod algebra, Contemp. Math. 12 (1981), 47–52.Google Scholar
[16] David R., Bausum, An expression for χ(Sqm), Preprint, Minnesota University (1975).
[17] D. J., Benson, Representations and cohomology II: Cohomology of groups and modules, Cambridge Studies in Advanced Mathematics 31, Cambridge University Press (1991).
[18] D. J., Benson and V., Franjou, Séries de compositions de modules instables et injectivité de la cohomologie du groupe Z/2, Math. Zeit 208 (1991), 389–399.
[19] P. C. P., Bhatt, An interesting way to partition a number, Information Processing Letters 71 (1999), 141–148.
[20] Anders, Björner and Francesco, Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics 231, Springer-Verlag, 2005.
[21] J. M., Boardman, Modular representations on the homology of powers of real projective spaces, Algebraic Topology, Oaxtepec 1991, Contemp. Math. 146 (1993), 49–70.Google Scholar
[22] Kenneth S., Brown, Buildings, Springer-Verlag, New York, 1989.
[23] Robert R., Bruner, Lê M, , and Nguyen H. V., Hung, On the algebraic transfer, Trans. Amer. Math. Soc. 357 (2005), 473–487.Google Scholar
[24] S. R., Bullett and I. G., Macdonald, On the Adem relations, Topology 21 (1982), 329–332.Google Scholar
[25] H. E.A., Campbell and P. S., Selick, Polynomial algebras over the Steenrod algebra, Comment. Math. Helv. 65 (1990), 171–180.Google Scholar
[26] David P., Carlisle, The modular representation theory of GL(n,p) and applications to topology, Ph.D. dissertation, University of Manchester, 1985.
[27] D., Carlisle, P., Eccles, S., Hilditch, N., Ray, L., Schwartz, G., Walker and R., Wood, Modular representations of GL(n,p), splitting (C P ∞ × … × C P ∞), and the β-family as framed hypersurfaces, Math. Zeit. 189 (1985), 239–261.Google Scholar
[28] D. P., Carlisle and N. J., Kuhn, Subalgebras of the Steenrod algebra and the action of matrices on truncated polynomial algebras, Journal of Algebra 121 (1989), 370–387.CrossRef
[29] D. P., Carlisle and N. J., Kuhn, Smash products of summands of B( Z/p)n +, Contemp. Math. 96 (1989), 87–102.CrossRef
[30] David P., Carlisle and Grant, Walker, Poincaré series for the occurrence of certain modular representations of GL(n,p) in the symmetric algebra, Proc. Roy. Soc. Edinburgh 113A (1989), 27–41.Google Scholar
[31] D. P., Carlisle and R. M. W., Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, Adams Memorial Symposium on Algebraic Topology, Vol. 2, London Math. Soc. Lecture Note Ser. 176, Cambridge University Press, (1992), 203–216.
[32] D. P., Carlisle, G., Walker and R. M. W., Wood, The intersection of the admissible basis and the Milnor basis of the Steenrod algebra, J. Pure App. Algebra 128 (1998), 1–10.Google Scholar
[33] Séminaire Henri, Cartan, 2 Espaces fibrés et homotopie (1949–50), 7 Algèbre d'Eilenberg-MacLane et homotopie (1954–55), 11 Invariant de Hopf et opérations cohomologiques secondaires (1958–59), available online at http://www. numdam.org
[34] H., Cartan, Une théorie axiomatique des carrés de Steenrod, C. R. Acad. Sci. Paris 230 (1950), 425–427.Google Scholar
[35] H., Cartan, Sur l'itération des opérations de Steenrod, Comment. Math. Helv. 29 (1955), 40–58.Google Scholar
[36] R. W., Carter, Representation theory of the 0-Hecke algebra, J. of Algebra 104 (1986), 89–103.Google Scholar
[37] R. W., Carter and G., Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), 347–384.Google Scholar
[38] Chen, Shengmin and Shen, Xinyao, On the action of Steenrod powers on polynomial algebras, Proceedings of the Barcelona Conference on Algebraic Topology, Lecture Notes in Mathematics 1509, Springer-Verlag (1991), 326–330.
[39] D. E., Cohen, On the Adem relations, Math. Proc. Camb. Phil. Soc. 57 (1961), 265–267.CrossRef
[40] M. C., Crabb, M. D., Crossley and J. R., Hubbuck, K -theory and the anti-automorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 124 (1996), 2275–2281.Google Scholar
[41] M. C., Crabb and J. R., Hubbuck, Representations of the homology of BV and the Steenrod algebra II, Algebraic Topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994) 143–154, Progr. Math. 136, Birkhaüser, Basel, 1996.
[42] M. D., Crossley and J. R., Hubbuck, Not the Adem relations, Bol. Soc. Mat. Mexicana (2) 37 (1992), No. 1–2, 99–107.
[43] M. D., Crossley, A(p)-annihilated elements of H(C P ∞ × C P ∞), Math. Proc. Cambridge Philos. Soc. 120 (1996), 441–453.Google Scholar
[44] M. D., Crossley, H V is of bounded type over A(p), Group Representations: Cohomology, group actions, and topology (Seattle 1996), Proc. Sympos. Pure Math. 63, Amer. Math. Soc. (1998), 183–190.Google Scholar
[45] M. D., Crossley, A(p) generators for H V and Singer's homological transfer, Math. Zeit. 230 (1999), No. 3, 401–411.Google Scholar
[46] M. D., Crossley, Monomial bases for H(C P ∞ ×C P ∞) over A(p), Trans. Amer. Math. Soc. 351 (1999), No. 1, 171–192.Google Scholar
[47] M. D., Crossley and Sarah, Whitehouse, On conjugation invariants in the dual Steenrod algebra, Proc. Amer. Math. Soc. 128 (2000), 2809–2818.Google Scholar
[48] Charles W., Curtis and Irving, Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
[49] D. M., Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235–236.Google Scholar
[50] D. M., Davis, Some quotients of the Steenrod algebra, Proc. Amer. Math. Soc. 83 (1981), 616–618.Google Scholar
[51] J., Dieudonné, A history of algebraic and differential topology 1900–1960, Birkhäuser, Basel, 1989.
[52] A., Dold, Ü ber die Steenrodschen Kohomologieoperationen, Annals of Math. 73 (1961), 258–294.Google Scholar
[53] Stephen, Donkin, On tilting modules for algebraic groups, Math. Zeitschrift 212 (1993), 39–60.Google Scholar
[54] Stephen, Doty, Submodules of symmetric powers of the natural module for GLn, Invariant Theory (Denton, TX 1986) 185–191, Contemp. Math. 88, Amer. Math. Soc., Providence, RI, 1989.Google Scholar
[55] Stephen, Doty and Grant, Walker, The composition factors of Fp [x1, x2, x3] as a GL(3,Fp,-module, J. of Algebra 147 (1992), 411–441.CrossRef
[56] Stephen, Doty and Grant, Walker, Modular symmetric functions and irreducible modular representations of general linear groups, J. Pure App. Algebra 82 (1992), 1–26.Google Scholar
[57] Stephen, Doty and Grant, Walker, Truncated symmetric powers and modular representations of GLn, Math. Proc. Cambridge Philos. Soc. 119 (1996), 231–242.Google Scholar
[58] Jeanne, Duflot, Lots of Hopf algebras, J. Algebra 204 (1998), No. 1, 69–94.Google Scholar
[59] V., Franjou and L., Schwartz, Reduced unstable A -modules and the modular representation theory of the symmetric groups, Ann. Scient. Ec. Norm. Sup. 23 (1990), 593–624.Google Scholar
[60] W., Fulton, Young, Tableaux, London Math. Soc. Stud. Texts 35, Cambridge Univ. Press, 1997.
[61] A. M., Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), 161–166.Google Scholar
[62] L., Geissinger, Hopf algebras of symmetric functions and class functions, Springer Lecture Notes in Mathematics 579 (1977), 168–181.Google Scholar
[63] V., Giambalvo, Nguyen H. V., Hung and F. P., Peterson, H(R P ∞ ×·· ·×R P ∞) as a module over the Steenrod algebra, Hilton Symposium 1993, Montreal, CRM Proc. Lecture Notes 6, Amer. Math. Soc. Providence RI (1994), 133–140.
[64] V., Giambalvo and H. R., Miller, More on the anti-automorphism of the Steenrod algebra, Algebr. Geom. Topol. 11 (2011), No. 5, 2579–2585.Google Scholar
[65] V., Giambalvo and F. P., Peterson, On the height of Sq2n, Contemp. Math. 181 (1995), 183–186.
[66] V., Giambalvo and F. P., Peterson, The annihilator ideal of the action of the Steenrod algebra on H(R P ∞), Topology Appl. 65 (1995), 105–122.Google Scholar
[67] V., Giambalvo and F. P., Peterson, A -generators for ideals in the Dickson algebra, J. Pure Appl. Algebra 158 (2001), 161–182.Google Scholar
[68] D. J., Glover, A study of certain modular representations, J. Algebra 51 (1978), No. 2, 425–475.Google Scholar
[69] M. Y., Goh, P., Hitczenko and Ali, Shokoufandeh, s-partitions, Information Processing Letters 82 (2002), 327–329.
[70] Brayton I., Gray, Homotopy Theory, Academic Press, New York, 1975.
[71] Lê Minh, , Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Proceedings of the school and conference on algebraic topology, Hanoi 2004, Geom. Topol. Publ. Coventry, 11 (2007), 81–105.Google Scholar
[72] Nguyen Dang Ho, Hai, Generators for the mod 2 cohomology of the Steinberg summand of Thom spectra over B( Z/2)n, J. Algebra 381 (2013), 164–175.Google Scholar
[73] G. H., Hardy and E. M., Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
[74] J. C., Harris and N. J., Kuhn, Stable decomposition of classifying spaces of finite abelian p-groups, Math. Proc. Cambridge Philos. Soc. 103 (1988), 427–449.Google Scholar
[75] J. C., Harris, T. J., Hunter and R. J., Shank, Steenrod algebra module maps from H(B(Z/p)n to H(B(Z/p)s, Proc. Amer. Math. Soc. 112 (1991), 245–257.Google Scholar
[76] T. J., Hewett, Modular invariant theory of parabolic subgroups of GLn(Fq) and the associated Steenrod modules, Duke Math. J. 82 (1996), 91–102.Google Scholar
[77] Florent, Hivert and Nicolas M., Thiéry, The Hecke group algebra of a Coxeter group and its representation theory, J. Algebra 321, No. 8 (2009), 2230–2258.Google Scholar
[78] Florent, Hivert and Nicolas M., Thiéry, Deformation of symmetric functions and the rational Steenrod algebra, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes 35, Amer. Math. Soc, Providence, RI, 2004, 91–125.Google Scholar
[79] J. E., Humphreys, Modular Representations of Finite Groups of Lie Type, London Math. Soc. Lecture Note Ser. 326, Cambridge Univ. Press, 2005.
[80] Nguyen H. V., Hung, The action of Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc. 113 (1991), 1097–1104.Google Scholar
[81] Nguyen H. V., Hung, The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math. 23 (1995), 39–56.Google Scholar
[82] Nguyen H. V., Hung, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), 3893–3910: Erratum, ibid. 355 (2003), 3841–3842.Google Scholar
[83] Nguyen H. V., Hung, The weak conjecture on spherical classes, Math. Z. 231 (1999), 727–743.Google Scholar
[84] Nguyen H. V., Hung, Spherical classes and the lambda algebra, Trans. Amer. Math. Soc. 353 (2001), 4447–4460.Google Scholar
[85] Nguyen H. V., Hung, On triviality of Dickson invariants in the homology of the Steenrod algebra, Math. Proc. Camb. Phil. Soc. 134 (2003), 103–113.Google Scholar
[86] Nguyen H. V., Hung, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005), 4065–4089.Google Scholar
[87] Nguyen H. V., Hung, On A2-generators for the cohomology of the symmetric and the alternating groups, Math Proc. Cambridge Philos. Soc. 139 (2005), 457–467.Google Scholar
[88] Nguyen H. V., Hung and Tran Dinh, Luong, The smallest subgroup whose invariants are hit by the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 142 (2007), 63–71.Google Scholar
[89] Nguyen H. V., Hung and Pham Anh, Minh, The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math. 23 (1995), 39–56.Google Scholar
[90] Nguyen H. V., Hung and Tran Ngoc, Nam, The hit problem for modular invariants of linear groups, J. Algebra 246 (2001), 367–384.Google Scholar
[91] Nguyen H. V., Hung and Tran Ngoc, Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), 5029–5040.Google Scholar
[92] Nguyen H. V., Hung and F. P., Peterson, A2-generators for the Dickson algebra, Trans. Amer. Math. Soc. 347 (1995), 4687–4728.Google Scholar
[93] Nguyen H. V., Hung and F. P., Peterson, Spherical classes and the Dickson algebra, Math. Proc. Cambridge Philos. Soc. 124 (1998), 253–264.Google Scholar
[94] Nguyen H. V., Hung and Vo T. N., Quynh, The image of Singer's fourth transfer, C. R. Acad. Sci. Paris, Ser I 347 (2009), 1415–1418.Google Scholar
[95] B., Huppert and N., Blackburn, Finite Groups II, Chapter VII, Springer-Verlag, Berlin, Heidelberg, 1982.
[96] Masateru, Inoue, A2-generators of the cohomology of the Steinberg summand M(n), Contemp. Math. 293 (2002), 125–139.Google Scholar
[97] Masateru, Inoue, Generators of the cohomology of M(n) as a module over the odd primary Steenrod algebra, J. Lond. Math. Soc. 75, No. 2 (2007), 317–329.Google Scholar
[98] G. D., James and A., Kerber, The representation theory of the symmetric group, Encyclopaedia of Mathematics, vol. 16, Addison-Wesley, Reading, Mass., 1981.
[99] A. S., Janfada, The hit problem for symmetric polynomials over the Steenrod algebra, Ph.D. thesis, University of Manchester, 2000.
[100] A. S., Janfada, A criterion for a monomial in P(3) to be hit, Math. Proc. Cambridge Philos. Soc. 145 (2008), 587–599.
[101] A. S., Janfada, A note on the unstability conditions of the Steenrod squares on the polynomial algebra, J. Korean Math. Soc 46 (2009), No. 5, 907–918.Google Scholar
[102] A. S., Janfada, On a conjecture on the symmetric hit problem, Rend. Circ. Mat. Palermo, 60, 2011, 403–408.Google Scholar
[103] A. S., Janfada, Criteria for a symmetrized monomial in B( 3) to be non-hit, Commun. Korean Math. Soc. 29 (2014), No. 3, 463–478.Google Scholar
[104] A. S., Janfada and R. M. W, Wood., The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), 295–303.Google Scholar
[105] A. S., Janfada and R. M. W, Wood., Generating H(BO(3),F2) as a module over the Steenrod algebra, Math. Proc. Camb. Phil. Soc. 134 (2003), 239–258.Google Scholar
[106] M., Kameko, Products of projective spaces as Steenrod modules, Ph.D. thesis, Johns Hopkins Univ., 1990.
[107] M., Kameko, Generators of the cohomology of BV 3, J. Math. Kyoto Univ. 38 (1998), 587–593.Google Scholar
[108] M., Kameko, Generators of the cohomology of BV 4, preprint, Toyama Univ., 2003.
[109] M., Kaneda, M., Shimada, M., Tezuka and N., Yagita, Representations of the Steenrod algebra, J. of Algebra 155 (1993), 435–454.Google Scholar
[110] Ismet, Karaca, On the action of Steenrod operations on polynomial algebras, Turkish J. Math. 22 (1998), No. 2, 163–170.Google Scholar
[111] Ismet, Karaca, Nilpotence relations in the mod p Steenrod algebra, J. Pure App. Algebra 171 (2002), No. 2–3, 257–264.Google Scholar
[112] C., Kassel, Quantum Groups, Graduate Texts in Mathematics 155, Springer- Verlag, 1995.
[113] N., Kechagias, The Steenrod algebra action on generators of subgroups of GL(n,Z/pZ), Proc. Amer. Math. Soc. 118 (1993), 943–952.
[114] D., Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363–365.
[115] L., Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand. 16 (1965), 97–115.Google Scholar
[116] Nicholas J., Kuhn, The modular Hecke algebra and Steinberg representation of finite Chevalley groups, J. Algebra 91 (1984), 125–141.Google Scholar
[117] N. J., Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra: I, Amer. J.Math. 116 (1994), 327–360; II, K -Theory 8 (1994), 395–428; III, K -theory 9 (1995), 273–303.CrossRef
[118] N. J., Kuhn and S. A., Mitchell, The multiplicity of the Steinberg representation of GLnFq in the symmetric algebra, Proc. Amer. Math. Soc. 96 (1986), 1–6.Google Scholar
[119] J., Lannes and L., Schwartz, Sur la structure des A -modules instables injectifs, Topology 28 (1989), 153–169.
[120] J., Lannes and S., Zarati, Sur les U -injectifs, Ann. Scient. Ec. Norm. Sup. 19 (1986), 593–603.
[121] M., Latapy, Partitions of an integer into powers, in Discrete Mathematics and Theoretical Computer Science Proceedings, Paris, 2001, 215–228.
[122] Cristian, Lenart, The combinatorics of Steenrod operations on the cohomology of Grassmannians, Adv. Math. 136 (1998), 251–283.
[123] Li, Zaiqing, Product formulas for Steenrod operations, Proc. Edinburgh Math. Soc. 38 (1995), 207–232.
[124] Arunas, Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. No. 42 (1962).
[125] Arunas, Liulevicius, On characteristic classes, Lectures at the Nordic Summer School in Mathematics, Aarhus University, 1968.
[126] L., Lomonaco, A basis of admissible monomials for the universal Steenrod algebra, Ricer. Mat. 40 (1991), 137–147.Google Scholar
[127] L., Lomonaco, The iterated total squaring operation, Proc. Amer. Math. Soc. 115 (1992), 1149–1155.Google Scholar
[128] I. G., Macdonald, Symmetric Functions and Hall Polynomials (second edition), Oxford mathematical monographs, Clarendon Press, Oxford, 1995.
[129] Harvey, Margolis, Spectra and the Steenrod algebra, North Holland Math Library, vol. 29, Elsevier, Amsterdam (1983).
[130] J. P., May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications, Lecture Notes in Mathematics 168, Springer-Verlag (1970), 153–231.Google Scholar
[131] Dagmar M., Meyer, Stripping and conjugation in the Steenrod algebra and its dual, Homology, Homotopy and Applications 2 (2000), 1–16.
[132] Dagmar M., Meyer, Hit polynomials and excess in the mod p Steenrod algebra, Proc. Edinburgh Math. Soc. (2) 44 (2001), 323–350.CrossRefGoogle Scholar
[133] Dagmar M., Meyer and Judith H., Silverman, Corrigendum to ‘Hit polynomials and conjugation in the dual Steenrod algebra’, Math. Proc. Cambridge Philos. Soc. 129 (2000), 277–289.Google Scholar
[134] John, Milnor, The Steenrod algebra and its dual, Annals of Math. 67 (1958), 150–171.Google Scholar
[135] J., Milnor and J. C., Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965), 211–264.Google Scholar
[136] J. W., Milnor and J. D., Stasheff, Characteristic Classes, Princeton University Press, 1974.
[137] Pham Anh, Minh and Ton That, Tri, The first occurrence for the irreducible modules of the general linear groups in the polynomial algebra, Proc. Amer. Math. Soc. 128 (2000), 401–405.Google Scholar
[138] Pham Anh, Minh and Grant, Walker, Linking first occurrence polynomials over Fp by Steenrod operations, Algebr. Geom. Topol. 2 (2002), 563–590.Google Scholar
[139] S. A., Mitchell, Finite complexes with A(n)-free cohomology, Topology 24 (1985), 227–248.
[140] S. A., Mitchell, Splitting B( Z/p)n and BTn via modular representation theory, Math. Zeit. 189 (1985), 285–298.Google Scholar
[141] S. A., Mitchell and S. B., Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285–298.Google Scholar
[142] K., Mizuno and Y., Saito, Note on the relations on Steenrod squares, Proc. Jap. Acad. 35 (1959), 557–564.Google Scholar
[143] K. G., Monks, Nilpotence in the Steenrod algebra, Bol. Soc.Mat.Mex. 37 (1992), 401–416.Google Scholar
[144] K. G., Monks, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. 122 (1994), 625–634.Google Scholar
[145] K. G., Monks, The nilpotence height of Pst, Proc. Amer. Math. Soc. 124 (1996), 1296–1303.Google Scholar
[146] K. G., Monks, Change of basis, monomial relations, and the Pst bases for the Steenrod algebra, J. Pure App. Algebra 125 (1998), 235–260.Google Scholar
[147] R. E., Mosher and M. C., Tangora, Cohomology operations and applications in homotopy theory, Harper and Row, New York, 1968.
[148] M. F., Mothebe, Generators of the polynomial algebra F2 [x1, …, xn] as a module over the Steenrod algebra, Communications in Algebra 30 (2002), 2213–2228.Google Scholar
[149] M. F., Mothebe, Dimensions of subspaces of the polynomial algebra F2 [x1, …, xn] generated by spikes, Far East J. Math. Sci. 28 (2008), 417–430.Google Scholar
[150] M. F., Mothebe, Admissible monomials and generating sets for the polynomial algebra as a module over the Steenrod algebra, Afr. Diaspora J.Math. 16 (2013), 18–27.Google Scholar
[151] M. F., Mothebe, Dimension result for the polynomial algebra F2 [x1, …, xn] as a module over the Steenrod algebra, Int. J. Math. Math. Sci. (2013) Art. ID 150704, 6pp., MR3144989.
[152] Huynh, Mui, Dickson invariants and Milnor basis of the Steenrod algebra, Topology, theory and application, Coll. Math. Soc. Janos Bolyai 41, North Holland (1985), 345–355.Google Scholar
[153] Huynh, Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sec. 1A 22 (1975), 319–369.Google Scholar
[154] Tran Ngoc, Nam, A2-générateurs génériques pour l'algèbre polynomiale, Adv. Math. 186 (2004), 334–362.
[155] Tran Ngoc, Nam, Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble) 58 (2008), 1785–1837.Google Scholar
[156] P. N., Norton, 0-Hecke, algebras, J. Austral. Math. Soc. (Ser. A) 27 (1979), 337–357.CrossRef
[157] John H., Palmieri and James J., Zhang, Commutators in the Steenrod algebra, New York J. Math. 19 (2013), 23–37.Google Scholar
[158] S., Papastavridis, A formula for the obstruction to transversality, Topology 11 (1972), 415–416.
[159] David J., Pengelley, Franklin P., Peterson and Frank, Williams, A global structure theorem for the mod 2 Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras, Math. Proc. Cambridge Philos. Soc. 129 (2000), 263–275.Google Scholar
[160] D. J., Pengelley and F., Williams, Sheared algebra maps and operation bialgebras for mod 2 homology and cohomology, Trans. Amer. Math. Soc. 352 (2000), No. 4, 1453–1492.Google Scholar
[161] D. J., Pengelley and F., Williams, Global Structure of the mod 2 symmetric algebra H(BO,F2) over the Steenrod algebra, Algebr. Geom. Topol. 3 (2003), 1119–1138.Google Scholar
[162] D. J., Pengelley and F., Williams, The global structure of odd-primary Dickson algebras as algebras over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 136 (2004), No. 1, 67–73.Google Scholar
[163] D. J., Pengelley and F., Williams, Beyond the hit problem: minimal presentations of odd-primary Steenrod modules, with application to C P ∞ and BU, Homology, Homotopy and Applications, 9, No. 2 (2007), 363–395.Google Scholar
[164] D. J., Pengelley and F., Williams, A new action of the Kudo-Araki-May algebra on the dual of the symmetric algebras, with applications to the hit problem, Algebraic and Geometric Topology 11 (2011), 1767–1780.Google Scholar
[165] D. J., Pengelley and F., Williams, The hit problem for H(BU(2);Fp), Algebraic and Geometric Topology 13 (2013), 2061–2085.Google Scholar
[166] D. J., Pengelley and F., Williams, Sparseness for the symmetric hit problem at all primes, Math. Proc. Cambridge Philos. Soc. 158 (2015), No. 2, 269–274.Google Scholar
[167] F. P., Peterson, Some formulas in the Steenrod algebra, Proc. Amer. Math. Soc. 45 (1974), 291–294.Google Scholar
[168] F. P., Peterson, Generators of H(RP∞ ∧ RP ∞) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. (1987), 833-55-89.
[169] F. P., Peterson, A -generators for certain polynomial algebras, Math. Proc. Camb. Phil. Soc. 105 (1989), 311–312.Google Scholar
[170] Dang Vo, Phuc and Nguyen, Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Acad. Sci. Paris, Ser. 1 353 (2015), 1035–1040.Google Scholar
[171] Dang Vo, Phuc and Nguyen, Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017), 149–162.Google Scholar
[172] Powell, Geoffrey M. L., Embedding the flag representation in divided powers, J. of Homotopy and Related Structures 4(1) (2009), 317–330.Google Scholar
[173] J., Repka and P., Selick, On the subalgebra of H((R P ∞ )n;F2) annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998), 273–288.Google Scholar
[174] J., Riordan, Combinatorial Identities, John Wiley & Sons, New York, 1968.
[175] B. E., Sagan, The Symmetric Group, Graduate Texts in Mathematics 203, Springer (2001).
[176] Robert, Sandling, The lattice of column 2-regular partitions in the Steenrod algebra, MIMS EPrint 2011.101, University of Manchester 2011, http:// www.manchester.ac.uk/mims/eprints
[177] L., Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, 1994.
[178] J., Segal, Notes on invariant rings of divided powers, CRM Proceedings and Lecture Notes 35, Invariant Theory in All Characteristics, ed. H. E. A., Campbell and D. L., Wehlau, Amer. Math. Soc. 2004, 229–239.Google Scholar
[179] J.-P., Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232.Google Scholar
[180] Judith H., Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), 657–661.CrossRefGoogle Scholar
[181] Judith H., Silverman, Multiplication and combinatorics in the Steenrod algebra, J. Pure Appl. Algebra 111 (1996), 303–323.Google Scholar
[182] Judith H., Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 123 (1995), 627–637.Google Scholar
[183] Judith H., Silverman, Stripping and conjugation in the Steenrod algebra, J. Pure Appl. Algebra 121 (1997), 95–106.Google Scholar
[184] Judith H., Silverman, Hit polynomials and conjugation in the dual Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 123 (1998), 531–547.Google Scholar
[185] Judith H., Silverman and William M., Singer, On the action of Steenrod squares on polynomial algebras II, J. Pure App. Algebra 98 (1995), 95–103.Google Scholar
[186] William M., Singer, The transfer in homological algebra, Math. Z. 202 (1989), 493–523.
[187] William M., Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), 577–583.Google Scholar
[188] William M., Singer, Rings of symmetric functions as modules over the Steenrod algebra, Algebr. Geom. Topol. 8 (2008), 541–562.Google Scholar
[189] Larry, Smith and R. M., Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), 303–313.Google Scholar
[190] Larry, Smith, Polynomial Invariants of Finite Groups, A. K., Peters, Wellesley, Mass., 1995.
[191] Larry, Smith, An algebraic introduction to the Steenrod algebra, in: Proceedings of the School and Conference in Algebraic Topology, Hanoi, 2004, Geometry and Topology Monographs 11 (2007), 327–348.Google Scholar
[192] R. P., Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press (1999).
[193] N. E., Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947), 290–320.Google Scholar
[194] N. E., Steenrod, Reduced powers of cohomology classes, Ann. of Math. 56 (1952), 47–67.Google Scholar
[195] N. E., Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 213–217.Google Scholar
[196] N. E., Steenrod and D. B. A, Epstein., Cohomology Operations, Annals of Math. Studies 50, Princeton University Press (1962).
[197] R., Steinberg, Prime power representations of finite general linear groups II, Can. J. Math. 9 (1957), 347–351.CrossRefGoogle Scholar
[198] R., Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56.Google Scholar
[199] R., Steinberg, On Dickson's theorem on invariants, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 34 (1987), No. 3, 699–707.Google Scholar
[200] P. D., Straffin, Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253–255.Google Scholar
[201] Nguyen, Sum, On the action of the Steenrod-Milnor operations on the modular invariants of linear groups, Japan J. Math. 18 (1992), 115–137.Google Scholar
[202] Nguyen, Sum, On the action of the Steenrod algebra on the modular invariants of special linear group, Acta Math. Vietnam 18 (1993), 203–213.Google Scholar
[203] Nguyen, Sum, Steenrod operations on the modular invariants, Kodai Math. J. 17 (1994), 585–595.Google Scholar
[204] Nguyen, Sum, The hit problem for the polynomial algebra of four variables, Quy Nhon University, Vietnam, Preprint 2007, 240pp. Available online at http://arxiv.org/abs/1412.1709.
[205] Nguyen, Sum, The negative answer to Kameko's conjecture on the hit problem, C. R. Acad. Sci. Paris, Ser I 348 (2010), 669–672.Google Scholar
[206] Nguyen, Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), 2365–2390.Google Scholar
[207] Nguyen, Sum, On the hit problem for the polynomial algebra, C. R. Acad. Sci. Paris, Ser I 351 (2013), 565–568.Google Scholar
[208] Nguyen, Sum, On the Peterson hit problem of five variables and its application to the fifth Singer transfer, East-West J. Math. 16 (2014), 47–62.Google Scholar
[209] Nguyen, Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432–489.Google Scholar
[210] René, Thom, Une théorie intrinsèque des puissances de Steenrod, Colloque de Topologie de Strasbourg, Publication of the Math. Inst. University of Strasbourg (1951).
[211] René, Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ec. Norm. Sup. 69 (1952), 109–182.Google Scholar
[212] René, Thom, Quelque propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86.Google Scholar
[213] Ton That, Tri, The irreducible modular representations of parabolic subgroups of general linear groups, Communications in Algebra 26 (1998), 41–47.Google Scholar
[214] Ton That, Tri, On a conjecture of Grant Walker for the first occurrence of irreducible modular representations of general linear groups, Comm. Algebra 27 (1999), No. 11, 5435–5438.Google Scholar
[215] Neset Deniz, Turgay, An alternative approach to the Adem relations in the mod p Steenrod algebra, Turkish J. Math. 38 (2014), No. 5, 924–934.Google Scholar
[216] G., Walker and R. M. W., Wood, The nilpotence height of Sq2n, Proc. Amer.Math. Soc. 124 (1996), 1291–1295.
[217] G., Walker and R. M. W., Wood., The nilpotence height of Ppn, Math. Proc. Cambridge Philos. Soc. 123 (1998), 85–93.Google Scholar
[218] G., Walker and R. M. W., Wood., Linking first occurrence polynomials over F2 by Steenrod operations, J. Algebra 246 (2001), 739–760.Google Scholar
[219] G., Walker and R. M. W., Wood., Young tableaux and the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology, Hanoi 2004, Geometry and Topology Monographs 11 (2007), 379–397.Google Scholar
[220] G., Walker and R. M. W., Wood., Weyl modules and the mod 2 Steenrod Algebra, J. Algebra 311 (2007), 840–858.Google Scholar
[221] G., Walker and R. M. W., Wood., Flag modules and the hit problem for the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 147 (2009), 143–171.Google Scholar
[222] C. T. C., Wall, Generators and relations for the Steenrod algebra, Annals of Math. 72 (1960), 429–444.Google Scholar
[223] William C., Waterhouse, Two generators for the general linear groups over finite fields, Linear and Multilinear Algebra 24, No. 4 (1989), 227–230.Google Scholar
[224] Helen, Weaver, Ph.D. thesis, University of Manchester, 2006.
[225] C., Wilkerson, A primer on the Dickson invariants, Proc. of the Northwestern Homotopy Theory Conference, Contemp. Math. 19 (1983), 421–434.Google Scholar
[226] W. J., Wong, Irreducible modular representations of finite Chevalley groups, J. Algebra 20 (1972), 355–367.Google Scholar
[227] R. M.W., Wood, Modular representations of GL(n,Fp) and homotopy theory, Algebraic Topology, Göttingen, 1984, Lecture Notes in Mathematics 1172, Springer-Verlag (1985), 188–203.
[228] R. M.W., Wood, Splitting (C P ∞ × … × C P ∞) and the action of Steenrod squares on the polynomial ring F2 [x1, …, xn], Algebraic Topology Barcelona 1986, Lecture Notes in Mathematics 1298, Springer-Verlag (1987), 237–255.
[229] R. M.W., Wood, Steenrod squares of Polynomials, Advances in homotopy theory, London Mathematical Society Lecture Notes 139, Cambridge University Press (1989), 173–177.
[230] R. M.W., Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), 307–309.Google Scholar
[231] R. M.W., Wood, A note on bases and relations in the Steenrod algebra, Bull. London Math. Soc. 27 (1995), 380–386.Google Scholar
[232] R. M.W., Wood, Differential operators and the Steenrod algebra, Proc. London Math. Soc. 75 (1997), 194–220.Google Scholar
[233] R. M.W., Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), 194–220.Google Scholar
[234] R. M.W., Wood, Hit problems and the Steenrod algebra, Proceedings of the Summer School ‘Interactions between Algebraic Topology and Invariant Theory’, Ioannina University, Greece (2000), 65–103.
[235] R. M.W., Wood, Invariants of linear groups as modules over the Steenrod algebra, Ingo 2003, Invariant Theory and its interactions with related fields, University of Göttingen (2003).
[236] R. M.W., Wood, The Peterson conjecture for algebras of invariants, Invariant Theory in all characteristics, CRM Proceedings and Lecture Notes 35, Amer. Math. Soc., Providence R.I. (2004), 275–280.Google Scholar
[237] Wu Wen, Tsün, Les i-carrés dans une variété grassmanniènne, C. R. Acad. Sci. Paris 230 (1950), 918–920.Google Scholar
[238] Wu Wen, Tsün, Sur les puissances de Steenrod, Colloque de Topologie de Strasbourg, Publication of the Math. Inst. University of Strasbourg (1952).
[239] Hadi, Zare, On the Bott periodicity, A -annihilated classes in H(QX), and the stable symmetric hit problem, submitted to Math. Proc. Cambridge Philos. Soc. 2015.25/10/2017

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Grant Walker, University of Manchester, Reginald M. W. Wood, University of Manchester
  • Book: Polynomials and the mod 2 Steenrod Algebra
  • Online publication: 04 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781108304092.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Grant Walker, University of Manchester, Reginald M. W. Wood, University of Manchester
  • Book: Polynomials and the mod 2 Steenrod Algebra
  • Online publication: 04 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781108304092.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Grant Walker, University of Manchester, Reginald M. W. Wood, University of Manchester
  • Book: Polynomials and the mod 2 Steenrod Algebra
  • Online publication: 04 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781108304092.018
Available formats
×