Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T14:00:40.912Z Has data issue: false hasContentIssue false

12 - Stable Isotope Evidence for the Differentiation and Evolution of Planetesimals

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 246 - 266
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarede, F. 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461, 12271233.CrossRefGoogle ScholarPubMed
Armytage, R. M. G., Georg, R. B., Savage, P. S., et al. 2011. Silicon isotopes in meteorites and planetary core formation. Geochimica et Cosmochimica Acta, 75, 36623676.CrossRefGoogle Scholar
Barrat, J.A., Zanda, B., Moynier, F., et al. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83, 7992.CrossRefGoogle Scholar
Bertka, C. M. and Fei, Y. 1997. Mineralogy of the Martian interior up to core–mantle boundary pressures. Journal of Geophysical Research, 102, 52515264.CrossRefGoogle Scholar
Birch, F. 1964. Density and composition of mantle and core. Journal of Geophysical Research, 69, 43774388.CrossRefGoogle Scholar
Casanova, I., Keil, K., and Newsom, H. E. 1993. Composition of metal in aubrites: constraints on core formation. Geochimica et Cosmochimica Acta, 57, 675682.CrossRefGoogle Scholar
Chakrabarti, R. and Jacobsen, S. B. 2010. Silicon isotopes in the inner solar system: Implications for core formation, solar nebular processes and partial melting. Geochimica et Cosmochimica Acta, 74, 69216933.CrossRefGoogle Scholar
Chen, H., Savage, P. S., Teng, F-.Z., Helz, R. T., and Moynier, F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 407, 96108.Google Scholar
Craddock, P. R. and Dauphas, N. 2010. Iron isotopic compositions of geological reference materials and chondrites. Geostandards and Geoanalytical Research, 35, 101123.CrossRefGoogle Scholar
Craddock, P. R., Warren, J. M., and Dauphas, N. 2013. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth and Planetary Science Letters, 365, 6376.CrossRefGoogle Scholar
Dauphas, N., Craddock, P. R., Asimow, P. D., et al. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 288, 255267.CrossRefGoogle Scholar
Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H., and Kurosawa, K. 2015. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth and Planetary Science Letters, 427, 236248.CrossRefGoogle Scholar
Davis, A., Hashimoto, A., and Clayton, R. 1990. Isotope mass fractionation during evaporation of Mg2SiO4. Nature, 347, 655658.CrossRefGoogle Scholar
Day, J. M. and Moynier, F. 2014. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philosophical Transactions of the Royal Society of London A, 372, #20130259.Google ScholarPubMed
Fei, Y. and Bertka, C. 2005. The interior of Mars. Science, 308, 11201121.CrossRefGoogle ScholarPubMed
Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., and Reynolds, B. C. 2009. Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth and Planetary Science Letters, 287, 7785.CrossRefGoogle Scholar
Fitoussi, C. and Bourdon, B. 2012. Silicon isotope evidence against an enstatite chondrite earth. Science, 335, 14771480.CrossRefGoogle ScholarPubMed
Gaetani, G. A. and Grove, T. L. 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61, 18291846.CrossRefGoogle Scholar
Georg, R. B., Halliday, A. N., Schauble, E. A., and Reynolds, B. C. 2007. Silicon in the Earth’s core. Science, 447, 11021006.Google ScholarPubMed
Gessmann, C. K., Wood, B. J., Rubie, D. C., and Kilburn, M. R. 2001. Solubility of silicon in liquid metal at high pressure: Implications for the composition of the Earth’s core. Earth and Planetary Science Letters, 184, 367376.CrossRefGoogle Scholar
Hezel, D. C., Needham, A. W., Armytage, R., et al. 2010. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 296, 423433.CrossRefGoogle Scholar
Herzog, G. F., Moynier, F., Albarede, F., and Berezhnoy, A. A. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele’s hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73, 58845904.CrossRefGoogle Scholar
Hin, R. C., Schmidt, M. W., and Bourdon, B. 2012. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochimica et Cosmochimica Acta, 93, 164181.CrossRefGoogle Scholar
Hin, R. C., Fitoussi, C., Schmidt, M. W., and Bourdon, B. 2014. Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth and Planetary Science Letters, 387, 5566.CrossRefGoogle Scholar
Kato, C, Moynier, F., Valdes, M., Dhaliwal, J., and Day, J. 2015. Extensive volatile loss during the formation and differentiation of the Moon. Nature Communications, 6, article no. 7617.Google Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.CrossRefGoogle Scholar
Keil, L. 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde, 72, 191218.CrossRefGoogle Scholar
Kong, P., Ebihara, M., and Palme, H. 1999. Siderophile elements in Martian meteorites and implications for core formation in Mars. Geochimica et Cosmochimica Acta, 63, 18651875.CrossRefGoogle Scholar
Larimer, J. W. 1979. The condensation and fractionation of refractory lithophile elements. Icarus, 40, 446454.CrossRefGoogle Scholar
Larimer, J. W. and Anders, E. 1970. Chemical fractionations in meteorites – III. Major element fractionations in chondrites. Geochimica et Cosmochimica Acta, 34, 367387.CrossRefGoogle Scholar
Lodders, K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.CrossRefGoogle Scholar
Lodders, K., Palme, H., and Wlotzka, F. 1993. Trace elements in mineral separates of the Pena Blanca Spring aubrite: implications for the evolution of the aubrite parent body. Meteoritics 28, 538551.CrossRefGoogle Scholar
Luck, J. M., Othman, D. B., and Albarede, F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69, 53515363.CrossRefGoogle Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. Papike, J. J.. Washington, DC: Mineralogical Society of America, ch.4.Google Scholar
Moynier, F., Albarede, F., and Herzog, G. 2006. Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70, 61036117CrossRefGoogle Scholar
Moynier, F., Beck, P., Jourdan, F., et al. 2009. Isotopic fractionation of zinc in tektites. Earth and Planetary Science Letters, 277, 482489.CrossRefGoogle Scholar
Moynier, F., Beck, P., Yin, Q., et al. 2010. Volatilization induced by impacts recorded in Zn isotope composition of ureilites. Chemical Geology, 276, 374379.CrossRefGoogle Scholar
Moynier, F., Paniello, R.C., Gounelle, M., et al. 2011. Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes. Geochimica et Cosmochimica Acta, 75, 297307.CrossRefGoogle Scholar
O’Neill, H. S. C. and Palme, H. 2008. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philisophical Transactions of the Royal Society A, 366, 42054238.CrossRefGoogle ScholarPubMed
Pahlevan, K. and Stevenson, D. J. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 262, 438449.CrossRefGoogle Scholar
Paniello, R. C., Day, J. M., and Moynier, F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490, 376379.CrossRefGoogle ScholarPubMed
Poirier, J. 1994. Light elements in the Earth’s outer core: A critical review. Physics of the Earth and Planetary Interiors, 85, 319337.CrossRefGoogle Scholar
Poitrasson, F., Halliday, A.N., Lee, D.C., Levasseur, S., and Teutsch, N. 2004. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth and Planetary Science Letters, 223, 253266.CrossRefGoogle Scholar
Poitrasson, F., Levasseur, S., and Teutsch, N. 2005. Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core–mantle differentiation of terrestrial planets. Earth and Planetary Science Letters, 234, 151164.CrossRefGoogle Scholar
Poitrasson, F., Roskosz, M., and Corgne, A. 2009. No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: Experimental evidence and implications for planetary differentiation and accretion. Earth and Planetary Science Letters, 278, 376385.CrossRefGoogle Scholar
Pringle, E. A., Moynier, F., Savage, P. S., Badro, J., and Barrat, J.-A. 2014. Silicon isotopes in angrites and volatile loss in planetesimals. Proceedings of the National Academy of Science of the United States of America, 111, 1702917032.CrossRefGoogle ScholarPubMed
Pringle, E. A., Savage, P. S., Badro, J., Barrat, J.-A., and Moynier, F. 2013. Redox state during core formation on asteroid 4-Vesta. Earth and Planetary Science Letters, 373, 7582.CrossRefGoogle Scholar
Righter, K. 2008. Siderophile element depletion in the angrite parent body (APB) mantle: due to core formation? Lunar and Planetary Science Conference, 39, 1391.Google Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.CrossRefGoogle Scholar
Rushmer, T., Petford, N., Humayun, M., and Campbell, A. 2005. Fe–liquid segregation in deforming planetesimals: Coupling core-forming compositions with transport phenomena. Earth and Planetary Science Letters, 239, 185202.CrossRefGoogle Scholar
Savage, P. S., Georg, R. B., Armytage, R. M. G., Williams, H. M., and Halliday, A. N. 2010. Silicon isotope homogeneity in the mantle. Earth and Planetary Science Letters, 295, 139146.CrossRefGoogle Scholar
Savage, P. S., Armytage, R. M. G., Georg, R. B., and Halliday, A. N. 2014. High temperature silicon isotope geochemistry. Lithos, 190–191, 500519.CrossRefGoogle Scholar
Savage, P. S. and Moynier, F. 2013. Si isotopic variations in enstatite meteorites: Clues to their origin. Earth and Planetary Science Letters, 361, 487496.CrossRefGoogle Scholar
Schoenberg, R. and von Blanckenburg, F. 2006. Modes of planetary-scale Fe isotope fractionation. Earth and Planetary Science Letters, 252, 342359.CrossRefGoogle Scholar
Schuessler, J., Schoenberg, R., Behrens, H., and Blanckenburg, F. 2007. The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt. Geochimica et Cosmochimica Acta, 71, 417433.CrossRefGoogle Scholar
Shahar, A. and Young, E. D. 2007. Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI. Earth and Planetary Science Letters, 257, 497510.CrossRefGoogle Scholar
Shahar, A., Ziegler, K., Young, E. D., et al. 2009. Experimentally determined Si isotope fractionation between silicate and metal and implications for Earth’s core formation. Earth and Planetary Science Letters, 288, 228234.CrossRefGoogle Scholar
Shahar, A., Hillgren, V. J., Young, E. D., et al. 2011. High-temperature Si isotope fractionation between iron metal and silicate. Geochimica et Cosmochimica Acta, 75, 76887697.CrossRefGoogle Scholar
Shahar, A., Hillgren, V. J., Horan, M. F., et al. 2015. Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochimica et Cosmochimica Acta, 150, 253264.CrossRefGoogle Scholar
Stolper, E. 1977. Experimental petrology of eucritic meteorites. Geochimica et Cosmochimica Acta, 41, 587611.CrossRefGoogle Scholar
Taylor, S. (1975). Lunar Sciences: a post Apollo View. Cambridge: Cambridge Press.Google Scholar
Teng, F. Z., Dauphas, N., and Helz, R. T. 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science, 320, 16201622.CrossRefGoogle ScholarPubMed
Tuff, J., Wood, B. J., and Wade, J. 2011. The effect of Si on metal–silicate partitioning of siderophile elements and implications for the conditions of core formation. Geochimica et Cosmochimica Acta, 75, 673690.CrossRefGoogle Scholar
van Acken, D., Brandon, A. D., and Lapen, T. J. 2012. Highly siderophile element and osmium isotope evidence for post-core formation magmatic and impact processes on the aubrite parent body. Meteoritics & Planetary Science, 47, 16061623.CrossRefGoogle Scholar
Wade, J. and Wood, B. J. 2005. Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters, 236, 7895.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Wang, K., Moynier, F., Dauphas, N., et al. 2012. Iron isotope fractionation in planetary crusts. Geochimica et Cosmochimica Acta, 89, 3145.CrossRefGoogle Scholar
Wang, K., Moynier, F., Barrat, J.-A., et al. 2013. Homogeneous distribution of Fe isotopes in the early solar nebula. Meteoritics & Planetary Science, 48, 354364.CrossRefGoogle Scholar
Wang, K., Savage, P. S., and Moynier, F. 2014. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor. Geochimica Et Cosmochimica Acta, 142, 149165.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G. 1994. Chemistry and accretion history of Mars. Philosophical Transactions of the Royal Society of London A, 349, 285293.Google Scholar
Wasson, J. T. and Chou, C.-L. 1974. Fractionation of moderately volatile elements in ordinary chondrites. Meteoritics, 9, 6984.CrossRefGoogle Scholar
Weyer, S., Anbar, A. D., Brey, G. P., et al. 2005. Iron isotope fractionation during planetary differentiation. Earth and Planetary Science Letters, 240, 251264.CrossRefGoogle Scholar
Wiechert, U. and Halliday, A. N. 2007. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth and Planetary Science Letters, 256, 360371.CrossRefGoogle Scholar
Williams, H. M., Wood, B. J., Wade, J., Frost, D. J., and Tuff, J. 2012. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth and Planetary Science Letters, 321–322, 5463.CrossRefGoogle Scholar
Williams, H. M., Markowski, A., Quitte, G., et al. 2006. Fe isotope fractionation in iron meteorites: New insights into metal–sulphide segregation and planetary accretion. Earth and Planetary Science Letters, 250, 486500.CrossRefGoogle Scholar
Young, E. D., Manning, C. E., Schauble, E. A., et al. 2015. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: Experiments, theory, and applications. Chemical Geology, 395, 176195.CrossRefGoogle Scholar
Zambardi, T., Poitrasson, F., Corgne, A., et al. 2013. Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochimica et Cosmochimica Acta, 121, 6783.CrossRefGoogle Scholar
Zhu, X. K., Guo, Y., O’Nions, R. K., Young, E. D., and Ash, R. D. 2001. Isotopic homogeneity of iron in the early solar nebula. Nature, 412, 311313.CrossRefGoogle ScholarPubMed
Zhu, X., Guo, Y., Williams, R., and O’Nions, R. 2002. Mass fractionation processes of transition metal isotopes. Earth and Planetary Science Letters, 200, 4762.CrossRefGoogle Scholar
Ziegler, K., Young, E. D., Schauble, E. A., and Wasson, J. T. 2010. Metal–silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth’s core formation. Earth and Planetary Science Letters, 295, 487496.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×