Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T16:25:02.299Z Has data issue: false hasContentIssue false

16 - Planetesimals in Debris Disks

from Part Three - Asteroids as Records of Formation and Differentiation

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 340 - 362
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absil, O., Defrère, D, Coudeè du Foresto, V., Di Folco, E., et al. 2013. A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. Astronomy & Astrophysics, 555A, 104124.CrossRefGoogle Scholar
Acke, B., Min, M., Dominik, C., et al. 2012. Herschel images of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity. Astronomy & Astrophysics, 540A, 125133.CrossRefGoogle Scholar
Adachi, I., Hayashi, C., and Nakazawa, K. 1976. The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress in Theoretical Physics, 56, 17561771.CrossRefGoogle Scholar
Adams, E. R., Gulbis, A. A. S., Elliot, J. L., et al. 2014. De-biased populations of Kuiper belt objects from the Deep Ecliptic Survey. Astronomical Journal, 148, 5571.CrossRefGoogle Scholar
ALMA Partnership, Brogan, C.L., Perez, L.M., et al. 2015. The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HL Tau region. Astrophysical Journal Letters, 808, 312.Google Scholar
Augereau, J. C., Nelson, R. P., Lagrange, A. M., et al. 2001. Dynamical modeling of large scale asymmetries in the beta Pictoris dust disk. Astronomy & Astrophysics, 370, 447455.CrossRefGoogle Scholar
Aumann, H. H., Beichman, C. A., Gillett, F. C., et al. 1984. Discovery of a shell around Alpha Lyrae, Astrophysical Journal Letters, 278, 2327.CrossRefGoogle Scholar
Bai, X.-N. and Stone, J. M. 2010. The effect of the radial pressure gradient in protoplanetary disks on planetesimal formation. Astrophysical Journal Letters, 722, 220223.CrossRefGoogle Scholar
Ballering, N. P., Rieke, G. H., Su, K. Y. L., and Montiel, E. 2013. A trend between cold debris disk temperature and stellar type: implications for the formation and evolution of wide-orbit planets. Astrophysical Journal, 775, 5568.CrossRefGoogle Scholar
Ballering, N. P., Rieke, G. H., and Gáspár, A. 2014. Probing the terrestrial regions of planetary systems: Warm debris disks with emission features. Astrophysical Journal, 793, 5775.CrossRefGoogle Scholar
Beitz, E., Güttler, C., Blum, J., et al. 2011. Low-velocity collisions of centimeter-sized dust aggregates. Astrophysical Journal, 736, 3444.CrossRefGoogle Scholar
Blum, J. and Wurm, G. 2008. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annual Review of Astronomy & Astrophysics, 46, 2146.CrossRefGoogle Scholar
Boley, A. C., Payne, M. J., Corder, S. et al. 2012. Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. Astrophysical Journal Letters, 750, 2125.CrossRefGoogle Scholar
Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., and Levison, H. F. 2009. The history of the solar system’s debris disc: Observable properties of the Kuiper belt. Monthly Notices of the Royal Astronomical Society, 399, 385398.CrossRefGoogle Scholar
Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, 148.CrossRefGoogle Scholar
Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P., and Paolicchi, P. 1994. Wavy size distributions for collisional systems with a small-size cutoff. Planetary and Space Science, 42, 10791092.CrossRefGoogle Scholar
Canup, R. M. 2004. Simulations of a late lunar-forming impact. Icarus, 168, 433456.CrossRefGoogle Scholar
Carrera, D., Johansen, A., and Davies, M. B. 2015. How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astronomy & Astrophysics, 579A, 4362.CrossRefGoogle Scholar
Chambers, J. E. 2004. Planetary accretion in the inner solar system. Earth and Planetary Science Letters, 223, 241252.CrossRefGoogle Scholar
Chen, C. H., Mittal, T., Kuchner, M., et al. 2014. The Spitzer Infrared Spectrograph Debris Disk Catalog. I. Continuum analysis of unresolved targets. Astrophysical Journal Supplements, 211, 2546.CrossRefGoogle Scholar
Chiang, E. and Youdin, A. N. 2010. Forming planetesimals in solar and extrasolar nebulae. Annual Review of Earth and Planetary Sciences, 38, 493522.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Shariff, K. 2008. Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. Astrophysical Journal, 687, 14321447.CrossRefGoogle Scholar
Defrère, D., Hinz, P. M., Skemer, A. J., et al. 2015. First-light LBT nulling interferometric observations: Warm exozodiacal dust resolved within a few AU of η Crv. Astrophysical Journal, 799, 4250.CrossRefGoogle Scholar
Dent, W. R. F., Wyatt, M. C., Roberge, A., et al. 2014. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk. Science, 343, 14901492.CrossRefGoogle ScholarPubMed
Dohnanyi, J. S. 1969. Collisional model of asteroids and their debris. Journal of Geophysical Research, 74, 25312554.CrossRefGoogle Scholar
Drążkowska, J., Windmark, F., and Dullemond, C. P. 2014. Modeling dust growth in protoplanetary disks: The breakthrough case. Astronomy & Astrophysics, 567A, 3845.CrossRefGoogle Scholar
Dressing, C. D. and Charbonneau, D. 2015. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophysical Journal, 807, 4567.CrossRefGoogle Scholar
Gáspár, A., Psaltis, D., Rieke, G. H., and Özel, F. 2012. Modeling collisional cascades in debris disks: steep dust-size distributions. Astrophysical Journal, 754, 7489.CrossRefGoogle Scholar
Gáspár, A., Rieke, G. H., and Balog, Z. 2013. The collisional evolution of debris disks. Astrophysical Journal, 768, 2553.CrossRefGoogle Scholar
Genda, H., Kobayashi, H., and Kokubo, E. 2015. Warm debris disks produced by giant impacts during terrestrial planet formation. Astrophysical Journal, 810, 136143.CrossRefGoogle Scholar
Gladman, B., Kavelaars, J. J., Petit, J.-M., et al. 2001. The structure of the Kuiper belt: Size distribution and radial extent. Astronomical Journal, 122, 10511066.CrossRefGoogle Scholar
Goldreich, P. and Ward, W. R. 1973. The formation of planetesimals. Astrophysical Journal, 183, 10511062.CrossRefGoogle Scholar
Goodman, J. and Pindor, B. 2000. Secular instability and planetesimal formation in the dust layer. Icarus, 148, 537549.CrossRefGoogle Scholar
Grogan, K., Dermott, S. F., and Durda, D. D. 2001. The size–frequency distribution of the zodiacal cloud: evidence from the solar system dust bands. Icarus, 152, 251267.CrossRefGoogle Scholar
Gustafson, B. Å. S. 1994. Physics of zodiacal dust. Annual Review of Earth and Planetary Sciences, 22, 553595.CrossRefGoogle Scholar
Jackson, A. P. and Wyatt, M. C. 2012. Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 425, 657679.CrossRefGoogle Scholar
Jacobson, S. A., Morbidelli, A., Raymond, S. N., et al. 2014. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature, 508, 8487.CrossRefGoogle ScholarPubMed
Jacquet, E., Balbus, S., and Latter, H. 2011. On linear dust-gas streaming instabilities in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 415, 35913598.CrossRefGoogle Scholar
Jewitt, D. and Luu, J. 1993. Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730732.CrossRefGoogle Scholar
Johansen, A. and Youdin, A. N. 2007. Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration. Astrophysical Journal, 662, 627641.CrossRefGoogle Scholar
Johansen, A., Youdin, A. N., and Lithwick, Y. 2012. Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy & Astrophysics, 537, A125A141.CrossRefGoogle Scholar
Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., and Gounelle, M. 2015a. New paradigms for asteroid formation. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, 471492.Google Scholar
Johansen, A., MacLow, M.-M., Lacerda, P., and Bizzarro, M. 2015b. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 115109.CrossRefGoogle ScholarPubMed
Johnson, B. C. and Melosh, H. J. 2012. Formation of spherules in impact produced vapor plumes. Icarus, 217, 416430.CrossRefGoogle Scholar
Johnson, B. C., Lisse, C. M., Chen, C. H., et al. 2012. A self-consistent model of the circumstellar debris created by a giant hypervelocity mpact in the HD 172555 system. Astrophysical Journal, 761, 4557.CrossRefGoogle Scholar
Kalas, P., Graham, J. R., Fitzgerald, M. P., and Clampin, M. 2013. STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. Astrophysical Journal, 775, 5686.CrossRefGoogle Scholar
Kennedy, G. M. and Kenyon, S. J. 2008. Planet formation around stars of various masses: The snow line and the frequency of giant planets. Astrophysical Journal, 673, 502512.CrossRefGoogle Scholar
Kennedy, G. M. and Wyatt, M. C. 2014. Do two-temperature debris discs have multiple belts? Monthly Notices of the Royal Astronomical Society, 444, 31643182.CrossRefGoogle Scholar
Kenyon, S. J. and Bromley, B. C. 2004. Detecting the dusty debris of terrestrial planet formation. Astrophysical Journal Letters, 602, 133136.CrossRefGoogle Scholar
Kenyon, S. J. and Bromley, B. C. 2006. Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astronomical Journal, 131, 18371850.CrossRefGoogle Scholar
Kenyon, S. J. and Bromley, B. C. 2012. Coagulation calculations of icy planet formation at 15–150 AU: A correlation between the maximum radius and the slope of the size distribution for trans-neptunian objects. Astrnomical Journal, 143, 6383.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Kokubo, E. and Ida, S. 1998. Oligarchic growth of protoplanets. Icarus, 131, 171178.CrossRefGoogle Scholar
Kral, Q., Thébault, P., Augereau, J.-C., Boccaletti, A., and Charnoz, S. 2015. Signatures of massive collisions in debris discs. A self-consistent numerical model. Astronomy & Astrophysics, 573A, 3954.CrossRefGoogle Scholar
Kretke, K. A. and Lin, D. N. C. 2007. Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. Astrophysical Journal Letters, 664, 5558.CrossRefGoogle Scholar
Liou, J.-C. and Zook, H. A. 1999. Signatures of the giant planets imprinted on the Edgeworth–Kuiper belt dust disk. Astronomical Journal, 118, 580590.CrossRefGoogle Scholar
Lisse, C. M., Chen, C. H., Wyatt, M. C., et al. 2009. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the 12 Myr HD172555 system. Astrophysical Journal, 701, 20192032.CrossRefGoogle Scholar
Lyra, W. and Lin, M.-K. 2013. Steady state dust distributions in disk vortices: Observational predictions and applications to transitional disks. Astrophysical Journal, 775, 1726.CrossRefGoogle Scholar
Malhotra, R. 2015. The mass distribution function of planets. Astrophysical Journal, 808, 7178.CrossRefGoogle Scholar
Mann, I., Murad, E., and Czechowski, A. 2007. Nanoparticles in the inner solar system. Planetary and Space Science, 55, 10001009.CrossRefGoogle Scholar
Melis, C., Zuckerman, B., Rhee, J. H., et al. 2012. Rapid disappearance of a warm, dusty circumstellar disk. Nature, 487, 7476.CrossRefGoogle ScholarPubMed
Meng, H. Y. A., Rieke, G. H., Su, K. Y. L., et al. 2012. Variability of the infrared excess of extreme debris disks. Astrophysical Journal Letters, 751, 1721.CrossRefGoogle Scholar
Meng, H. Y. A., Su, K. Y. L., and Rieke, G. H. 2014. Large impacts around a solar-analog star in the era of terrestrial planet formation. Science, 345, 10321035.CrossRefGoogle ScholarPubMed
Meng, H. Y. A., Su, K. Y. L., Rieke, G. H., et al. 2015. Planetary collisions outside the solar system: time domain characterization of extreme debris disks. Astrophysical Journal, 805, 7791.CrossRefGoogle Scholar
Mennesson, B., Millan-Gabet, R., Serabyn, E., et al. 2014. Constraining the exozodiacal luminosity function of main-sequence stars: Complete results from the Keck Nuller mid-infrared surveys. Astrophysical Journal, 797, 119146.CrossRefGoogle Scholar
Minato, T., Köhler, M., Kimura, H., Mann, I., and Yamamoto, T. 2006. Momentum transfer to fluffy dust aggregates from stellar winds. Astronomy & Astrophysics, 452, 701707.CrossRefGoogle Scholar
Mittal, T., Chen, C. H., Jang-Condell, H., et al. 2015. The Spitzer Infrared Spectrograph Debris Disk Catalog. II. Silicate feature analysis of unresolved targets. Astrophysical Journal, 798, 87112.CrossRefGoogle Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., and Bottke, W. F. 2015a. The dynamical evolution of the asteroid belt. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, 493507.Google Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., and Bitsch, B. 2015b. The great dichotomy of the solar system: Small terrestrial embryos and massive giant planet cores. Icarus, 258, 418429.CrossRefGoogle Scholar
Mulders, G. D., Pascucci, I., and Apai, D. 2015. An increase in the mass of planetary systems around lower-mass stars. Astrophysical Journal, 814, 130139CrossRefGoogle Scholar
Nesvorný, D., Bottke, W. F., Levison, H. F., and Dones, L. 2003. Recent origin of the solar system dust bands. Astrophysical Journal, 591, 486497.CrossRefGoogle Scholar
Nesvorný, D., Jenniskens, P., Levison, H. A., et al. 2010. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophysical Journal, 713, 816836.CrossRefGoogle Scholar
O’Brien, D. P. and Greenberg, R. 2003. Steady-state size distributions for collisional populations: Analytical solution with size-dependent strength. Icarus, 164, 334345.CrossRefGoogle Scholar
O’Brien, D. P. and Sykes, M. V. 2011. The origin and evolution of the asteroid belt: Implications for Vesta and Ceres. Space Science Reviews, 163, 4161.CrossRefGoogle Scholar
Ootsubo, T., Ueno, M., Ishiguro, M., et al. 2009. Mid-Infrared spectrum of the zodiacal light observed with AKARI/IRC. AKARI, a Light to Illuminate the Misty Universe. Astronomical Society of the Pacific Conference Series, 418, 395398.Google Scholar
Ormel, C. W. and Klahr, H. H. 2010, The effect of gas drag on the growth of protoplanets. Astronomy & Astrophysics, 520A, 4357.CrossRefGoogle Scholar
Pan, L., Padoan, P., Scalo, J., Kritsuk, A. G., and Norman, M. L. 2011. Turbulent clustering of protoplanetary dust and planetesimal formation. Astrophysical Journal, 740, 626.CrossRefGoogle Scholar
Papoular, R. and Pégourié, B. 1983. The IR silicate features as a measure of grain size in circumstellar dust. Astronomy & Astrophysics, 128, 335346.Google Scholar
Plavchan, P., Jura, M., and Lipscy, S. J. 2005. Where are the M dwarf disks older than 10 million years? Astrophysical Journal, 631, 11611169.CrossRefGoogle Scholar
Rieke, G. H., Gáspár, A., and Ballering, N. P. 2016. Magnetic grain trapping and the hot excesses around early-type stars. Astrophysical Journal, 816, 5063.CrossRefGoogle Scholar
Roberge, Aki, Chen, C. H., Millan-Gabet, R., et al. 2012. The exozodiacal dust problem for direct observations of exo-Earths. Publications of the Astronomical Society of the Pacific, 124, 799808.CrossRefGoogle Scholar
Schneider, G., Grady, C. A., Hines, D. C., et al. 2014. Probing for exoplanets hiding in dusty debris disks: disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy. Astronomical Journal, 148, 59108CrossRefGoogle Scholar
Shariff, K. and Cuzzi, J. N. 2011. Gravitational instability of solids assisted by gas drag: Slowing by turbulent mass diffusivity. Astrophysical Journal, 738, 7381.CrossRefGoogle Scholar
Sheehan, P. D. and Eisner, J. A. 2014. Constraining the disk masses of the class I binary protostar GV Tau. Astrophysical Journal, 791, 1937.CrossRefGoogle Scholar
Sierchio, J. M., Rieke, G. H., Su, K. Y. L., and Gáspár, A. 2014. The decay of debris disks around Solar-type stars. Astrophysical Journal, 785, 3345.CrossRefGoogle Scholar
Simon, J. B., Armitage, P. J., Li, R., and Youdin, A. N. 2016. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophysical Journal, 822, 5572.CrossRefGoogle Scholar
Smith, B. A. and Terrile, R. J. 1984. A circumstellar disk around Beta Pictoris. Science, 226, 14211424.CrossRefGoogle ScholarPubMed
Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Mamaje, E. E., and Naylor, T. 2014. Ages of young stars. In Protostars & Planets VI, ed. Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T.. Tucson, AZ: University of Arizona Press, 219241.Google Scholar
Soummer, R., Perrin, M. D., Pueyo, L., et al. 2014. Five debris disks newly revealed in scattered light from the Hubble Space Telescope NICMOS archive. Astrophysical Journal Letters, 786, L23L29.CrossRefGoogle Scholar
Stapelfeldt, K. R., Holmes, E. K., Chen, C. H. et al. 2004. First Look at the Fomalhaut debris disk with the Spitzer Space Telescope. Astrophysical Journal Supplements, 154, 458462.CrossRefGoogle Scholar
Stock, N. D., Su, K. Y.L., Liu, W. et al. 2010. The structure of the β Leonis debris disk. Astrophysical Journal, 724, 12381255.CrossRefGoogle Scholar
Su, K. Y. L., Rieke, G. H., Malhotra, R., et al. 2013. Asteroid belts in debris disk twins: Vega and Fomalhaut. Astrophysical Journal, 763, 118131.CrossRefGoogle Scholar
Su, K. Y. L. and Rieke, G. H. 2014. Signposts of multiple planets in debris disks. Exploring the formation and evolution of planetary systems. IAU Symposim, 299, 318321.Google Scholar
Szalay, J., Piquette, M., and Horanyi, M. 2015. Dust measurements by the Student Dust Counter onboard the New Horizons mission to Pluto. Lunar and Planetary Science Conference, 46, 1701.Google Scholar
Takahashi, S. Z. and Inutsuka, S.-I. 2014. Two-component secular gravitational instability in a protoplanetary disk: A possible mechanism for creating ring-like structures. Astrophysical Journal, 794, 5561.CrossRefGoogle Scholar
Thébault, P. and Augereau, J.-C. 2007. Collisional processes and size distribution in spatially extended debris discs. Astronomy & Astrophysics, 472, 169185.CrossRefGoogle Scholar
van Boekel, R., Min, M., Leinert, Ch., et al. 2004. The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature, 432, 479482.CrossRefGoogle ScholarPubMed
Vitense, Ch, Krivov, A. V., Kobayashi, H., and Löhne, T. 2012. An improved model of the Edgeworth–Kuiper debris disk. Astronomy & Astrophysics, 540, 3039.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2012. Populating the asteroid belt from two parent source regions due to the migration of giant planets: “The Grand Tack”. Meteoritics & Planetary Science, 47, 19411947.CrossRefGoogle Scholar
Weidenschilling, S. J. 1980. Dust to planetesimals: Settling and coagulation in the solar nebula. Icarus, 44, 172189.CrossRefGoogle Scholar
Weissman, P. R. 1984. The VEGA particulate shell: Comets or asteroids? Science, 224, 987989.CrossRefGoogle ScholarPubMed
Whipple, F. L. 1972. On certain aerodynamic processes for asteroids and comets. In From Plasma to Planet, ed. Elvius, A.. New York: Wiley, 211232.Google Scholar
Williams, J. P. and Cieza, L. A. 2011. Protoplanetary disks and their evolution. Annual Review of Astronomy & Astrophysics, 49, 67117.CrossRefGoogle Scholar
Wyatt, M. C., Smith, R., Su, K. Y. L., et al. 2007. Steady state evolution of debris disks around A stars. Astrophysical Journal, 663, 365382.CrossRefGoogle Scholar
Wyatt, M. C. 2008. Evolution of debris disks. Annual Review of Astronomy & Astrophysics, 46, 339383.CrossRefGoogle Scholar
Youdin, A. N. 2010. From grains to planetesimals, EAS Publication Series, 41, 187207.CrossRefGoogle Scholar
Youdin, A. N. 2011. On the formation of planetesimals via secular gravitational instabilities with turbulent stirring, Astrophysical Journal, 731, 99116.CrossRefGoogle Scholar
Youdin, A. N. 2011b, The Exoplanet Census: A general method applied to Kepler. Astrophysical Journal, 742, 3850CrossRefGoogle Scholar
Youdin, A. N. and Chiang, E. I. 2004. Particle pileups and planetesimal formation. Astrophysical Journal, 601, 11091119.CrossRefGoogle Scholar
Youdin, A. N. and Goodman, J. 2005. Streaming instabilities in protoplanetary disks. Astrophysical Journal, 620, 459469.CrossRefGoogle Scholar
Youdin, A. N. and Johansen, A. 2007. Protoplanetary disk turbulence driven by the streaming instability: Linear evolution and numerical methods. Astrophysical Journal, 662, 613626.CrossRefGoogle Scholar
Youdin, A. N. and Kenyon, S. J. 2012. From disks to planets. In Planets, Stars and Stellar Systems, ed. Oswalt, T. D., French, L. M., Kalas, P.. Dordrecht: Springer, 162.Google Scholar
Youdin, A. N. and Lithwick, Y. 2007. Particle stirring in turbulent gas disks: Including orbital oscillations. Icarus, 192, 588604.CrossRefGoogle Scholar
Youdin, A. N. and Shu, F. H. 2002. Planetesimal formation by gravitational instability. Astrophysical Journal, 580, 494505.CrossRefGoogle Scholar
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., and Dullemond, C. P. 2010. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astronomy & Astrophysics, 513A, 5778.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×