Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T19:23:59.480Z Has data issue: false hasContentIssue false

10 - Magnetic Mineralogy of Meteoritic Metal: Paleomagnetic Evidence for Dynamo Activity on Differentiated Planetesimals

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 204 - 223
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.CrossRefGoogle Scholar
Asti, G., Solzi, M., Ghidini, M., and Neri, F. 2004. Micromagnetic analysis of exchange-coupled hard–soft planar nanocomposites. Physical Review B, 69, 174401.CrossRefGoogle Scholar
Boesenberg, J. S., Delaney, J. S., and Hewins, R. H. 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.CrossRefGoogle Scholar
Brecher, A. and Albright, L. 1977. The thermoremanence hypothesis and the origin of magnetization in iron meteorites. Journal of Geomagnetism and Geoelectricity, 29, 379400.CrossRefGoogle Scholar
Bryson, J. F., Church, N. S., Kasama, T., and Harrison, R. 2014a. Nanomagnetic intergrowths in Fe–Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields. Earth and Planetary Science Letters, 388, 237248.CrossRefGoogle Scholar
Bryson, J. F., Herrero-Albillos, J., Kronast, F., et al. 2014b. Nanopaleomagnetism of meteoritic Fe–Ni studied using X-ray photoemission electron microscopy. Earth and Planetary Science Letters, 396, 125133.CrossRefGoogle Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-albillos, J., et al. 2015. Long-lived magnetism from solidifcation-driven convection on the pallasite parent body. Nature, 517, 472475.CrossRefGoogle ScholarPubMed
Cisowski, S. M. 1987. Magnetism of meteorites. In Geomagnetism, ed. Jacobs, J. A.. New York: Academic Press, vol. 2, 525560.Google Scholar
Clarke, R. S. and Scott, E. R. D. 1980. Tetrataenite – ordered FeNi, a new mineral in meteorites. American Mineralogist, 65, 624630.Google Scholar
Dang, M., Dubé, M., and Rancourt, D. 1995. Local moment magnetism of fcc Fe–Ni alloys II. Ising approximation Monte Carlo. Journal of Magnetism and Magnetic Materials, 147, 133140.CrossRefGoogle Scholar
Dang, M. and Rancourt, D. 1996. Simultaneous magnetic and chemical order-disorder phenomena in Fe3Ni, FeNi, and FeNi3. Physical Review B, 53, 2291.CrossRefGoogle ScholarPubMed
Dos Santos, E., Gattacceca, J., Rochette, P., Scorzelli, R. B., and Fillion, G. 2014. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Physics of Earth and Planetary Interiors, 242, 5064.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.CrossRefGoogle Scholar
Fearn, D. R. and Loper, D. E. 1981. Compositional convection and stratification of Earth’s core. Nature, 289, 393394.CrossRefGoogle Scholar
Goldstein, J. and Michael, J. 2006. The formation of plessite in meteoritic metal. Meteoritics & Planetary Science, 41, 553570.CrossRefGoogle Scholar
Goldstein, J., Scott, E., and Chabot, N. 2009a. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.CrossRefGoogle Scholar
Goldstein, J., Yang, J., Kotula, P., Michael, J., and Scott, E. 2009b. Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteoritics & Planetary Science, 44, 343358.CrossRefGoogle Scholar
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.CrossRefGoogle Scholar
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.CrossRefGoogle Scholar
James, P., Eriksson, O., Johansson, B., and Abrikosov, I. 1999. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Physical Review B, 59, 419430.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Kneller, E. and Hawig, R. 1991. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Transactions on Magnetics, 27, 35883600.CrossRefGoogle Scholar
Leroux, H., Doukhan, J.-C., and Perron, C. 2000. Microstructures of metal grains in ordinary chondrites: Implications for their thermal histories. Meteoritics & Planetary Science, 35, 569580.CrossRefGoogle Scholar
Lewis, L. H., Mubarok, A., Poirier, E., et al. 2014. Inspired by nature: Investigating tetrataenite for permanent magnet applications. Journal of Physics Condensed Matter, 26, 064213.CrossRefGoogle ScholarPubMed
Locatelli, A. and Bauer, E. 2008. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. Journal of Physics Condensed Matter, 20, 093002.CrossRefGoogle Scholar
McCoy, T. J., Walker, R. J., Goldstein, J. I., et al., 2011. Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history. Geochimica et Cosmochimica Acta, 75, 68216843.CrossRefGoogle Scholar
Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., and Dautreppe, D. 1964. Magnetic properties of an iron–nickel single crystal ordered by neutron bombardment. Journal of Applied Physics, 35, 873876.CrossRefGoogle Scholar
Nimmo, F., 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.CrossRefGoogle Scholar
Olson, P. and Christensen, U. R. 2006. Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250, 561571.CrossRefGoogle Scholar
Rancourt, D., Lagarec, K., Densmore, A., et al., 1999. Experimental proof of the distinct electronic structure of a new meteoritic Fe–Ni alloy phase. Journal of Magnetism and Magnetic Materials, 191, L255L260.CrossRefGoogle Scholar
Rancourt, D. G. and Scorzelli, R. B. 1995. Low-spin γ-Fe–Ni (γ LS) proposed as a new mineral in Fe–Ni-bearing meteorites: epitaxial intergrowth of γ LS and tetrataenite as a possible equilibrium state at∼ 20–40 at% Ni. Journal of Magnetism and Magnetic Materials, 150, 3036.CrossRefGoogle Scholar
Reuter, K. B., Williams, D. B., and Goldstein, J. I. 1988. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 52, 617626.CrossRefGoogle Scholar
Sterenborg, M. G. and Crowley, J. W. 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of Earth and Planetary Interiors, 214, 5373.CrossRefGoogle Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al., 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–42.CrossRefGoogle ScholarPubMed
Tarduno, J. A., Cottrell, R., Watkeys, M., et al. 2010. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327, 12381240.CrossRefGoogle ScholarPubMed
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J. 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth and Planetary Science Letters, 306, 241252.CrossRefGoogle Scholar
Wasilewski, P. 1988. Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite. Physics of Earth and Planetary Interiors, 52, 150158.CrossRefGoogle Scholar
Wasson, J. T. and Choi, B.-G. 2003. Main-group pallasites: Chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 30793096.CrossRefGoogle Scholar
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L., et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713716.CrossRefGoogle ScholarPubMed
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.CrossRefGoogle Scholar
Yang, C., Williams, D., and Goldstein, J. 1996. A revision of the Fe–Ni phase diagram at low temperatures (< 400 °C). Journal of Phase Equilibria, 17, 522531.CrossRefGoogle Scholar
Yang, C.-W., Williams, D. B., and Goldstein, J. I. 1997a. Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites. Geochimica et Cosmochimica Acta, 61, 29432956.CrossRefGoogle Scholar
Yang, C., Williams, D. B., and Goldstein, J. I. 1997b. A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteoritics & Planetary Science, 32, 423429.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. 2010. Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.CrossRefGoogle Scholar
Zhang, J., Williams, D., and Goldstein, J. 1993. The microstructure and formation of duplex and black plessite in iron meteorites. Geochimica et Cosmochimica Acta, 57, 37253735.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×