Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T17:28:24.515Z Has data issue: false hasContentIssue false

9 - Magnetic Fields on Asteroids and Planetesimals

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 180 - 203
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M. H., Anderson, B. J., Russell, C.T., et al. 2002. NEAR magnetic field observations at 433 Eros: First measurements from the surface of an asteroid. Icarus, 155, 220228.CrossRefGoogle Scholar
Acuña, M. H., Kletetschka, G., and Connerney, J. E. P. 2008. Mars’ crustal magnetization: A window into the past. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J.F.. Cambridge: Cambridge University Press, 242262.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L., Korth, H., et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862.CrossRefGoogle ScholarPubMed
Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.CrossRefGoogle Scholar
Auster, H. U., Richter, I., Glassmeier, K.-H., et al. 2010. Magnetic field investigations during Rosetta’s 2867 Šteins flyby. Planetary and Space Science, 58, 11241128.CrossRefGoogle Scholar
Auster, H. U., Apathy, I., Berghofer, G., et al. 2015. The nonmagnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science, 349, aaa5102-1.CrossRefGoogle ScholarPubMed
Bai, X.-N. and Stone, J. M. 2013. Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophysical Journal, 769, 76.CrossRefGoogle Scholar
Baumgartel, K., Sauer, K., Story, T. R., and Mckenzie, J. F. 1997. Solar wind response to a magnetized asteroid: Linear theory. Icarus, 129, 94-105.CrossRefGoogle Scholar
Bland, P. A., Collins, G. S., Davison, T. M., et al. 2014. Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications, 5, 5451.CrossRefGoogle ScholarPubMed
Blanco-Cano, X., Omidi, N. and Russell, C. T. 2003. Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida. Journal of Geophysical Research, 108, 1216.CrossRefGoogle Scholar
Brett, R. and Bell, P. M. 1969. Melting relations in the Fe-rich portion of the system Fe–FeS at 30 kb pressure, Earth and Planetary Science Letters, 6, 479482.CrossRefGoogle Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., et al., 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.CrossRefGoogle ScholarPubMed
Burke, B. F. and Franklin, K. L. 1955. Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60, 213217.CrossRefGoogle Scholar
Butler, R. F. 1972. Natural remanent magnetization and thermomagnetic properties of Allende meteorite. Earth and Planetary Science Letters, 17, 120128.CrossRefGoogle Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T. et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 63866389.CrossRefGoogle Scholar
Cerantola, V., Walte, N. P., and Rubie, D. C. 2015. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core–mantle differentiation. Earth and Planetary Science Letters, 417, 6777.CrossRefGoogle Scholar
Chabot, N. L. and Haack, H. 2006. Evolution of asteroidal cores. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 747771.CrossRefGoogle Scholar
Chan, K. H., Zhang, K., Li, L., and Liao, X. 2007. A new generation of convection-driven spherical dynamos using EBE finite element method. Physics of the Earth and Planetary Interiors, 163, 14.CrossRefGoogle Scholar
Christensen, U. R., 2010. Dynamo scaling laws and applications to the planets. Space Science Reviews, 152, 565590.CrossRefGoogle Scholar
Christensen, U. R. 2014. Iron snow dynamo models for Ganymede. Icarus, 247, 248259.CrossRefGoogle Scholar
Christensen, U. R. and Wicht, J. 2007. Numerical dynamo simulations. In Treatise on Geophysics, ed. Olson, P. L.. Amsterdam: Elsevier, 245282.CrossRefGoogle Scholar
Christensen, U. R., Olson, P., and Glatzmaier, G. 1999. Numerical modeling of the geodynamo: A systematic parameter study. Geophysical Journal International, 138, 393409.CrossRefGoogle Scholar
Christensen, U. R., Holzwarth, V., and Reiners, A. 2009. Energy flux determines magnetic field strength of planets and stars. Nature, 457, 167169.CrossRefGoogle ScholarPubMed
Cisowski, S. M. 1991. Remanent magnetic properties of unbrecciated eucrites. Earth and Planetary Science Letters, 107, 173181.CrossRefGoogle Scholar
Collinson, D. W. and Morden, S. J. 1994. Magnetic-properties of howardite, eucrite and diogenite (HED) meteorites: Ancient mgnetizing fields and meteorite evolution. Earth and Planetary Science Letters, 126, 421434.CrossRefGoogle Scholar
Cournède, C., Gattacceca, J., Zanda, B., and Rochette, P. 2012. Magnetic study of CM chondrites. EGU General Assembly, Vienna, April 22–27, paper no. 9740.Google Scholar
Cournède, C., Gattacceca, J., and Rochette, P. 2014. Partial asteroid differentiation revealed by paleomagnetism of R-chondrite meteorites. EGU General Assembly. Vienna, April 27–May 2, paper no. 4155.Google Scholar
Cournède, C., Gattacceca, J., Gounelle, M., et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 6274.CrossRefGoogle Scholar
Cowling, T. G. 1934. The magnetic field of sunspots. Monthly Notices of the Royal Astronomical Society, 34, 3948.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.CrossRefGoogle Scholar
Emmerton, S., Muxworthy, A. R., Hezel, D. C., and Bland, P. A. 2011. Magnetic characteristics of CV chondrules with paleointensity implications. Journal of Geophysical Research, 116, E12007.CrossRefGoogle Scholar
Fei, Y., Bertka, C. M., and Finger, L. W. 1997. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science, 275, 16211623.CrossRefGoogle ScholarPubMed
Fischer, S. R., Fu, R. R., Weiss, B. P., et al. 2013. Paleomagnetic detection of magnetic fields on a differentiated asteroid during the dynamo epoch. AGU Fall Meeting, San Francisco, December 9–13, abstract GP41D–1166.Google Scholar
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.CrossRefGoogle Scholar
Fu, R. R. and Weiss, B. P. 2012. Detrital remanent magnetization in the solar nebula. Journal of Geophysical Research, 117, E02003.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. 2012. An ancient core dynamo in asteroid Vesta. Science, 338, 238241.CrossRefGoogle ScholarPubMed
Fu, R. R., Lima, E. A., and Weiss, B. P. 2014a. No nebular magnetization in the Allende CV carbonaceous chondrite. Earth and Planetary Science Letters, 404, 5466.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. 2014b. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346, 10891092.CrossRefGoogle ScholarPubMed
Gattacceca, J., Rochette, P., and Bourot-Denise, M. 2003. Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Physics of the Earth and Planetary Interiors, 140, 343358.CrossRefGoogle Scholar
Gattacceca, J. and Rochette, P. 2004. Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth and Planetary Science Letters, 227, 377393.CrossRefGoogle Scholar
Gattacceca, J. Berthe, L. Boustie, M., et al. 2008. On the efficiency of shock magnetization processes. Physics of the Earth and Planetary Interiors, 166, 110.CrossRefGoogle Scholar
Greenstadt, E. W. 1971a. Conditions for magnetic interaction of asteroids with the solar wind. Icarus, 14, 374381.CrossRefGoogle Scholar
Greenstadt, E. W. 1971b. Possible magnetic interaction of asteroids with the solar wind. Proceedings of IAU Colloquium, 12, 567575.Google Scholar
Grove, T. L. 1982. Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: An experimental calibration. American Mineralologist, 67, 251268.Google Scholar
Goldstein, J. I., Scott, E. R. D. and Chabot, N. L 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.CrossRefGoogle Scholar
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.CrossRefGoogle Scholar
Haisch, K. E., Lada, E. A., and Lada, C. J. 2001. Disk frequencies and lifetimes in young clusters. Astrophysical Journal Letters, 553, L153L156.CrossRefGoogle Scholar
Hauck, S. A., Aurnou, J. M., and Dombard, A. J. 2006. Sulfur’s impact on core evolution and magnetic field generation on Ganymede. Journal of Geophysical Research, 111, E09008.CrossRefGoogle Scholar
Kerswell, R. R. 1993. The instability of precessing flow. Geophysical & Astrophysical Fluid Dynamics, 72, 107144.CrossRefGoogle Scholar
Kivelson, M. G., Bargatze, L. F., Khurana, K. K., et al. 1993. Magnetic field signatures near Galileo’s closest approach to Gaspra. Science, 261, 331334.CrossRefGoogle ScholarPubMed
Kivelson, M. G., Wang, Z., Joy, S. P., et al. 1995. Solar wind interaction with small bodies. 2. What can Galileo’s detection of magnetic rotations tell us about Gaspra and Ida. Advances in Space Research, 16, 4757.CrossRefGoogle Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T., et al. 1996. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537541.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. 2014. Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.CrossRefGoogle ScholarPubMed
Kullerud, G. and Yoder, H. S. 1959. Pyrite stability relations in the Fe–S system. Economic Geology, 54, 533572.CrossRefGoogle Scholar
Laneuville, M., Wieczorek, M. A., Breuer, D., et al. 2014. A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 401, 251260.CrossRefGoogle Scholar
Le Bars, M., Wieczorek, M. A., Karatekin, O., Cebron, D., and Laneuville, M. 2011. An impact-driven dynamo for the early Moon. Nature, 479, 215218.CrossRefGoogle ScholarPubMed
McCoy, T. J., Keil, K., Muenow, D.W., and Wilson, L. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.CrossRefGoogle Scholar
Monteux, J., Jellinek, A. M., and Johnson, C. L. 2011. Why might planets and moons have early dynamos? Earth and Planetary Science Letters, 310, 349359.CrossRefGoogle Scholar
Morden, S. J. 1992. A magnetic study of the Millbillillie (eucrite) achondrite: Evidence for dynamo-type magnetising field. Meteoritics, 27, 560567.CrossRefGoogle Scholar
Morden, S. J. and Collinson, D. W. 1992. The implications of the magnetism of ordinary chondrite meteorites. Earth and Planetary Science Letters, 109, 185204.CrossRefGoogle Scholar
Nagata, T. 1979. Natural remanent magnetization of the fusion crust of meteorites. Memoirs of National Institute of Polar Research, 15, 253272.Google Scholar
Narayan, C. and Goldstein, J. I. 1982. A dendritic solidification model to explain Ge–Ni variations in iron meteorite chemical groups. Geochimica et Cosmochimica Acta, 46, 259268.CrossRefGoogle Scholar
Ness, N. F. 2010. Space exploration of planetary magnetism. Space Science Reviews, 152, 522.CrossRefGoogle Scholar
Nimmo, F. 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.CrossRefGoogle Scholar
Omidi, N., Blanco-Cano, X., Russell, C. T., Karimabadi, H., and Acuna, M. 2002. Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. Journal of Geophysical Research, 107, 1487.CrossRefGoogle Scholar
Pesonen, L. J., Terho, M., and Kukkonen, I. T. 1993. Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium on Antarctic Meteorites, 6, 401416.Google Scholar
Richter, I., Brinza, D. E., Cassel, M., et al. 2001. First direct magnetic field measurements of an asteroidal magnetic field: DS1 at Braille. Geophysical Research Letters, 28, 19131916.CrossRefGoogle Scholar
Richter, I., Auster, H. U., Glassmeier, K. H., et al. 2012. Magnetic field measurements during the Rosetta flyby at asteroid (21) Lutetia. Planetary and Space Science, 66, 155164.CrossRefGoogle Scholar
Rückriemen, T., Breuer, D., and Spohn, T. 2015. The Fe snow regime in Ganymede’s core: A deep-seated dynamo below a stable snow zone. Journal of Geophysical Research: Planets, 120, 10951118.CrossRefGoogle Scholar
Scheinberg, A., Fu, R. R., Elkins-Tanton, E. T., and Weiss, B. P. 2015. Asteroid differentiation: melting and large-scale structure. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 533552.Google Scholar
Scheinberg, A., Elkins-Tanton, E. T., Schubert, G., and Bercovici, D. 2016. Core solidification and dynamo evolution in a mantle-stripped planetesimal. Journal of Geophysical Research: Planets, 121, 220.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. 2006. Hf‚W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.CrossRefGoogle Scholar
Sears, D. W. 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology, 5, 155164.Google Scholar
Shea, E. K., Weiss, B. P., Cassata, W. S., et al. 2012. A long-lived lunar core dynamo. Science, 335, 453456.CrossRefGoogle ScholarPubMed
Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J., and Beckwith, K. 2013a. Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophysical Journal, 764, 66.CrossRefGoogle Scholar
Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J., and Beckwith, K. 2013b. Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophysical Journal, 775, 73.CrossRefGoogle Scholar
Sterenborg, M. G. and Crowley, J. W. 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of the Earth and Planetary Interiors, 214, 5373.CrossRefGoogle Scholar
Stevenson, D. J. 2001. Mars’ core and magnetism. Nature, 412, 214219.CrossRefGoogle ScholarPubMed
Stevenson, D. J. 2003. Planetary magnetic fields. Earth and Planetary Science Letters, 208, 111.CrossRefGoogle Scholar
Stöffler, D., Keil, K., and Scott, E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.CrossRefGoogle Scholar
Suavet, C., Gattacceca, J., Rochette, P., et al. 2009. Magnetic properties of micrometeorites. Journal of Geophysical Research, 114, B04102.CrossRefGoogle Scholar
Sugiura, N., Lanoix, M., and Strangway, D. W. 1979. Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Physics of the Earth and Planetary Interiors, 20, 342349.CrossRefGoogle Scholar
Swindle, T. D. 1998. Implications of iodine-xenon studies for the timing and location of secondary alteration. Meteoritics & Planetary Science, 33, 11471155.CrossRefGoogle Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.CrossRefGoogle ScholarPubMed
Tarduno, J. A. and Cottrell, R. D. 2012. Single crystal paleointensity analyses of olivine–diogenites: Implications for a past Vestan dynamo. Lunar and Planetary Science Conference, 43, 2663.Google Scholar
Tilgner, A. 2005. Precession driven dynamos. Physics of Fluids, 17, 034104.CrossRefGoogle Scholar
Tomkins, A. G., Mare, E. R., and Raveggi, M. 2013. Fe-carbide and Fe-sulfide liquid immiscibility in IAB meteorite, Campo del Cielo: Implications for iron meteorite chemistry and planetesimal core compositions. Geochimica et Cosmochimica Acta, 117, 8098.CrossRefGoogle Scholar
Turner, N. J. Fromang, S., Gammie, C., et al., 2014. Transport and accretion in planet-forming disks. In Protostars and Planets VI, ed. Beuther, H., Klessen, R. S, Dullemond, C. P, and Henning, T.. Tucscon, AZ: University of Arizona Press, 411434.Google Scholar
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J., 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications of paleomagnetism of meteorites. Earth and Planetary Science Letters, 306, 241252.CrossRefGoogle Scholar
Wasilewski, P. 1981. New magnetic results from Allende C3(V). Physics of the Earth and Planetary Interiors, 26, 134148.CrossRefGoogle Scholar
Wasilewski, P., Acuña, M. H., and Kletetschka, G. 2002. 433 Eros: Problems with the meteorite magnetism record in attempting an asteroid match. Meteoritics & Planetary Science, 37, 937950.CrossRefGoogle Scholar
Wei, X., Arlt, R., and Tilgner, A. 2014. A simplified model of collision-driven dynamo action in small bodies. Physics of the Earth and Planetary Interiors, 231, 3038.CrossRefGoogle Scholar
Weisberg, M. K., McCoy, T. J., and Krot, A. N., 2006. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 1952.CrossRefGoogle Scholar
Weiss, B. P. and Tikoo, S. M. 2014. The lunar dynamo. Science, 346, 1246753, doi: 10.1126/science.1246753.CrossRefGoogle ScholarPubMed
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L. T., et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713716.CrossRefGoogle ScholarPubMed
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U. R. 2010. Paleomagnetic records of meteorites and early planetesimal differentiation. Space Science Reviews, 152, 341390.CrossRefGoogle Scholar
Weiss, B. P., Wang, H., Downey, B. G., et al., 2014. An unmagnetized early planetary body. AGU Fall Meeting, San Francisco, December 15–19, abstract GP51B–3733.Google Scholar
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., Michael, J. R., Kotula, P. G., and Scott, E. R. D. 2010. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 44934506.CrossRefGoogle Scholar
Yoshino, T., Walter, M. ., and Katsura, T. 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422, 154157.CrossRefGoogle ScholarPubMed
Zhan, X., Zhang, K., and Zhu, R. 2011. A full-sphere convection-driven dynamo: Implications for the ancient geomagnetic field. Physics of the Earth and Planetary Interiors, 187, 328335.CrossRefGoogle Scholar
Ziegler, L. B. and Stegman, D. R. 2013. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochemistry, Geophysics, Geosystems, 14, 47354742.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×