Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T23:34:50.955Z Has data issue: false hasContentIssue false

5 - Mars tectonics

Published online by Cambridge University Press:  30 March 2010

Matthew P. Golombek
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
Roger J. Phillips
Affiliation:
Planetary Science Directorate, Southwest Research Institute, Boulder
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Mars is a key intermediate-sized terrestrial planet that has maintained tectonic (and overall geologic) activity throughout its history, and preserved a record in rocks and terrains exposed at the surface. Among the earliest recorded major geologic events was lowering of the northern plains, relative to the southern highlands, possibly by a giant, oblique impact (or endogenic process) that left an elliptical basin with a thinned crust. Sitting on the edge of this global crustal dichotomy is Tharsis, an enormous elevated volcanic and tectonic bulge that rises ~10 km above the datum. It is topped by four giant shield volcanoes, and is surrounded by radial extensional grabens and rifts and concentric compressional wrinkle ridges that together deform the entire western hemisphere and northern plains. Deformation in the eastern hemisphere is more localized in and around large impact basins and volcanic provinces. Extensional structures are dominantly narrow grabens (several kilometers wide) that individually record of order 100 m extension, although larger (100 km wide), deeper rifts are also present. Compressional structures are dominated by wrinkle ridges, interpreted to be folds overlying blind thrust faults that individually record shortening of order 100 m, although larger compressional ridges and lobate scarps (thrust fault scarps) have also been identified. Strike-slip faults are relatively rare and typically form in association with wrinkle ridges or grabens.

Type
Chapter
Information
Planetary Tectonics , pp. 183 - 232
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., and Cloutier, P. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 790–793.Google ScholarPubMed
Allemand, P. and Thomas, P. G. (1995). Localization of Martian ridges by impact craters: Mechanical and chronological implications. J. Geophys. Res., 100, 3251–3262.CrossRefGoogle Scholar
Anderson, S. and Grimm, R. E. (1998). Rift processes at the Valles Marineris, Mars: Constraints from gravity on necking and rate-dependent strength evolution. J. Geophys. Res., 103, 11 113–11 124.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P., Haldemann, A. F. C., Franklin, B. J., Tanaka, K. L., Lias, J., and Peer, B. (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res., 106, 20 563–20 585.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Haldemann, A. F. C., Hare, T. M., and Baker, V. R. (2004). Tectonic histories between Alba Patera and Syria Planum, Mars. Icarus, 171, 31–38.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Haldemann, A. F. C., Pounders, E., Golombek, M., and Castano, A. (2008). Centers of tectonic activity in the eastern hemisphere of Mars. Icarus, 195, 537–546.CrossRefGoogle Scholar
Andrews-Hanna, J. C., Phillips, R. J., and Zuber, M. T. (2007). Meridiani Planum and the global hydrology of Mars. Nature, 446, 163–166.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. C., Zuber, M. T., and Banerdt, W. B. (2008a). The Borealis basin and the origin of the Martian crustal dichotomy. Nature, 453, 1212–1215.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. C., Zuber, M. T., and HauckI, S. A. (2008b). Strike-slip faults on Mars: Observations and implications for global tectonics and geodynamics. J. Geophys. Res., 113, doi:10.1029/2007JE002980.CrossRefGoogle Scholar
Anguita, F., Farelo, A. F., Lopez, V., Mas, C., Munoz-Espadas, M. J., Marquez, A., and Ruiz, J. (2001). Tharsis dome, Mars: New evidence for Noachian-Hesperian thick-skin and Amazonian thin-skin tectonics. J. Geophys. Res., 106, 7577–7589.CrossRefGoogle Scholar
Anguita, F., Fernández, C., Cordero, G., Carrasquilla, S., Anguita, J., Núñez, A., Rodríguez, S., and García, J. (2006). Evidences for a Noachian–Hesperian orogeny in Mars. Icarus, 185, 331–357.CrossRefGoogle Scholar
Arkani-Hamed, J. (2001). A 50-degree spherical harmonic model of the magnetic field of Mars. J. Geophys. Res., 106, 23 197–23 208.CrossRefGoogle Scholar
Arkani-Hamed, J. and Boutin, D. (2004). Paleomagnetic poles of Mars: Revisited. J. Geophys. Res., 109, doi:10.1029/2003JE002229; see also correction doi:10.1029/2004JE002278.Google Scholar
Arvidson, R., Guiness, E., and Lee, S. (1979). Differential aeolian redistribution rates on Mars. Nature, 278, 533–535.CrossRefGoogle Scholar
Baker, V. R., Carr, M. H., Gulick, V. C., Willemann, C. R., and Marley, M. S. (1992). Channels and valley networks. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 493–522.Google Scholar
Banerdt, W. B. (1986). Support of long-wavelength loads on Venus and implications for internal structure. J. Geophys. Res., 91, 403–419.CrossRefGoogle Scholar
Banerdt, W. B. and Golombek, M. P. (2000). Tectonics of the Tharsis region of Mars: Insights from MGS topography and gravity (abs.). Lunar Planet. Sci. Conf. XXXI, 2038. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Banerdt, W. B., Phillips, R. J., Sleep, N. H., and Saunders, R. S. (1982). Thick shell tectonics on one-plate planets: Applications to Mars. J. Geophys. Res., 87, 9723–9733.CrossRefGoogle Scholar
Banerdt, W. B., Golombek, M. P., and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 249–297.Google Scholar
Belleguic, V., Lognonné, P., and Wieczorek, M. (2005). Constraints on the Martian lithosphere from gravity and topography data. J. Geophys. Res., 110, doi:10.1029/2005JE002437.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Mustard, J., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., and the-Omega-team (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.CrossRefGoogle ScholarPubMed
Biswas, S. and Ravat, D. (2005). Why meaningful paleopoles can't be determined without special assumptions from Mars Global Surveyor data? (abs.)Lunar Planet. Sci. Conf. XXXVI, 2192. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Borgia, A., Burr, J., Montero, W., Morales, L. D., and Alvarado, G. E. (1990). Fault propagation folds induced by gravitational failure and slumping of the volcanic edifices. J. Geophys. Res., 95, 14 357–14 382.CrossRefGoogle Scholar
Borraccini, F., Lanci, L., Wezel, F. C., and Baioni, D. (2005). Crustal extension in the Ceraunius Fossae, Northern Tharsis Region, Mars. J. Geophys. Res., 110, doi:10.1029/2004JE002373.CrossRefGoogle Scholar
Borraccini, F., Lanci, L., and Wezel, F. C. (2006). Does a detachment level exist beneath the Ceraunius Fossae? Insights from graben mapping and lost-area balancing analysis. Planet. Space Sci., 54, 701–709.CrossRefGoogle Scholar
Borraccini, F., Di Achille, G., Ori, G. G., and Wezel, F. C. (2007). Tectonic evolution of the eastern margin of the Thaumasia Plateau (Mars) as inferred from detailed structural mapping and analysis. J. Geophys. Res., 112, doi:10.1029/2006JE002866.CrossRefGoogle Scholar
Brace, W. F. and Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 6248–6252.CrossRefGoogle Scholar
Breuer, D., Yuen, D. A., Spohn, T., and Zhang, S. (1998). Three dimensional models of Martian mantle convection with phase transitions. Geophys. Res. Lett., 25, 229–232.CrossRefGoogle Scholar
Burr, D. M., Grier, J. A., Keszthelyi, L. P., and McEwen, A. S. (2002a). Repeated aqueous flooding from the Cerberus Fossae: Evidence for very recently extant, deep groundwater on Mars. Icarus, 159, 53–73.CrossRefGoogle Scholar
Burr, D. M., McEwen, A. S., and Sakimoto, S. E. H. (2002b). Recent aqueous floods from the Cerberus Fossae. Geophys. Res. Lett., 29, doi:10.1029/2001GL013345.CrossRefGoogle Scholar
Cailleau, B., Walter, T. R., Janle, P., and Hauber, E. (2003). Modeling volcanic deformation in a regional stress field: Implications for the formation of graben structures on Alba Patera, Mars. J. Geophys. Res., 108, doi:10.1029/2003JE002135.CrossRefGoogle Scholar
Cailleau, B., Walter, T. R., Janle, P., and Hauber, E. (2005). Unveiling the origin of radial grabens on Alba Patera volcano by finite element modeling. Icarus, 176, 44–56.CrossRefGoogle Scholar
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press.Google Scholar
Chicarro, A., Schultz, P. H., and Masson, P. (1985). Global and regional ridge patterns on Mars. Icarus, 63, 153–174.CrossRefGoogle Scholar
Comer, R. P., Solomon, S. C., and Head, J. W. (1985). Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Rev. Geophys., 23, 61–92.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D., and Cloutier, P. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–798.CrossRefGoogle ScholarPubMed
Courtillot, V. E., Allegre, C. J., and Mattauer, M. (1975). On the existence of lateral relative motions on Mars. Earth Planet. Sci. Lett., 25, 279–285.CrossRefGoogle Scholar
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res., 107, doi:5110.1029/2001JE001505.CrossRefGoogle Scholar
Crumpler, L. S. and Aubele, J. C. (1978). Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis region of Mars. Icarus, 34, 496–541.CrossRefGoogle Scholar
Crumpler, L. S., Head, J. W., and Aubele, J. C. (1996). Calderas on Mars: Characteristics, structure, and associated flank deformation. In Volcano Instability on the Earth and Other Planets. Geol. Soc. Am. Spec. Publ. No. 110, ed. Mcguire, W. J., Jones, A. P. and Neuberg, J., pp. 307–348.CrossRef
Davis, P. A. and Golombek, M. P. (1990). Discontinuities in the shallow Martian crust at Lunae, Syria, and Sinai Plana. J. Geophys. Res., 95, 14 231–14 248.CrossRefGoogle Scholar
Davis, P. A., Tanaka, K. L., and Golombek, M. P. (1995). Topography of closed depressions, scarps, and grabens in the north Tharsis region of Mars: Implications for shallow crustal discontinuities and graben formation. Icarus, 114, 403–422.CrossRefGoogle Scholar
Dimitrova, L. L., Holt, W. E., Haines, A. J., and Schultz, R. A. (2006). Toward understanding the history and mechanisms of Martian faulting: The contribution of gravitational potential energy. Geophys. Res. Lett., 33, L08202, doi:10.1029/2005GL025307.CrossRefGoogle Scholar
Dohm, J. M. and Tanaka, K. L. (1999). Geology of the Thaumasia region, Mars: Plateau development, valley origins, and magmatic evolution. Planet. Space Sci., 47, 411–431.CrossRefGoogle Scholar
Dohm, J. M., Tanaka, K. L., and Hare, T. M. (2001). Geologic, paleotectonic, and paleoerosional maps of the Thaumasia Region, Mars. U.S. Geol. Surv. Geol. Invest. Ser., Map I-2650.
Ernst, R. E., Grosfils, E. B., and Mege, D. (2001). Giant dike swarms: Earth, Venus and Mars. Annu. Rev. Earth Planet. Sci., 29, 489–534.CrossRefGoogle Scholar
Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19, 617–620.2.3.CO;2>CrossRefGoogle Scholar
Fernández, C. and Anguita, F. (2007). Oblique rifting at Tempe Fossae, Mars. J. Geophys. Res., 112, doi:10.1029/2007JE002889.CrossRefGoogle Scholar
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W., and Franklin, N. M. (2004). Dilational fault slip and pit chain formation on Mars. GSA Today, 14, 4–12.2.0.CO;2>CrossRefGoogle Scholar
Finnerty, A. A., Phillips, R. J., and Banerdt, W. B. (1988). Igneous processes and the closed system evolution of the Tharsis region of Mars. J. Geophys. Res., 93, 10 225–10 235.CrossRefGoogle Scholar
Folkner, W. M., Yoder, C. F., Yuan, D. N., Standish, E. M., and Preston, R. A. (1997). Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science, 278, 1749–1752.CrossRefGoogle ScholarPubMed
Forsythe, R. D. and Zimbelman, J. R. (1988). Is the Gordii Dorsum escarpment on Mars an exhumed transcurrent fault?Nature, 336, 143–146.CrossRefGoogle Scholar
Francis, P. W. and Wadge, G. (1983). The Olympus Mons aureole: Formation by gravitational spreading. J. Geophys. Res., 88, 8333–8344.CrossRefGoogle Scholar
Freed, A. M., Melosh, H. J., and Solomon, S. C. (2001). Tectonics of mascon loading: Resolution of the strike-slip faulting paradox. J. Geophys. Res., 106, 20 603–20 620.CrossRefGoogle Scholar
Frey, H. (1979). Martian canyons and African rifts: Structural comparisons and implications. Icarus, 37, 142–155.CrossRefGoogle Scholar
Frey, H. V. (2006a). Impact constraints on the age and origin of the lowlands of Mars. Geophys. Res. Lett., 33, doi:10.1029/2005GL024484.CrossRefGoogle Scholar
Frey, H. V. (2006b). Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res., 111, doi:10.1029/2005JE002449.CrossRefGoogle Scholar
Frey, H. V. and Schultz, R. A. (1988). Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett., 15, 229–232.CrossRefGoogle Scholar
Frey, H., Sakimoto, S. E., and Roark, J. (1998). The MOLA topographic signature at the crustal dichotomy boundary zone on Mars. Geophys. Res. Lett., 25, 4409–4412.CrossRefGoogle Scholar
Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L., and Sakimoto, S. E. H. (2002). Ancient lowlands on Mars. Geophys. Res. Lett., 29, doi:10.1029/2001GL013832.CrossRefGoogle Scholar
Golombek, M. P. (1985). Fault type predictions from stress distributions on planetary surfaces: Importance of fault initiation depth. J. Geophys. Res., 90, 3065–3074.CrossRefGoogle Scholar
Golombek, M. P. (2003). The surface of Mars: Not just dust and rocks. Science, 300, 2043–2044.CrossRefGoogle ScholarPubMed
Golombek, M. P. and Bridges, N. T. (2000). Erosion rates on Mars and implications for climate change: Constraints from the Pathfinder landing site. J. Geophys. Res., 105, 1841–1853.CrossRefGoogle Scholar
Golombek, M. P. and McGill, G. E. (1983). Grabens, basin tectonics, and the maximum total expansion of the Moon. J. Geophys. Res., 88, 3563–3578.CrossRefGoogle Scholar
Golombek, M. P., Plescia, J. B., and Franklin, B. J. (1991). Faulting and folding in the formation of planetary wrinkle ridges. Proc. Lunar Planet. Sci. Conf. 21, 679–693.Google Scholar
Golombek, M. P., Tanaka, K. L., Chadwick, D. J., Franklin, B. J., and Davis, P. A. (1994). Extension across Tempe Terra and Sirenum provinces on Mars from measurements of fault scarp widths (abs.). Lunar Planet. Sci. Conf. XXV. Houston, TX: Lunar and Planetary Institute, 443–444.Google Scholar
Golombek, M. P., Tanaka, K. L., and Franklin, B. J. (1996). Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters. J. Geophys. Res., 101, 26 119–26 130.CrossRefGoogle Scholar
Golombek, M. P., Franklin, B. J., Tanaka, K. L., and Dohm, J. M. (1997). Extension through time across Thaumasia (abs.). Lunar Planet. Sci. Conf. XXVIII. Houston, TX: Lunar and Planetary Institute, 431–432.Google Scholar
Golombek, M. P., Anderson, F. S., and Zuber, M. T. (2001). Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. J. Geophys. Res., 106, 23 811–23 821.CrossRefGoogle Scholar
Golombek, M. P., Crumpler, L. S., Grant, J. A., Greeley, R., Cabrol, N. A., Parker, T. J., RiceJr., J. W., Ward, J. G., Arvidson, R. E., Moersch, J. E., Fergason, R. L., Christensen, P. R., Castaño, A., Castaño, R., Haldemann, A. F. C., Li, R., BellIII, J. F., and Squyres, S. W. (2006a). Geology of the Gusev cratered plains from the Spirit rover transverse. J. Geophys. Res., 111, doi:10.1029/2005JE002503.CrossRefGoogle Scholar
Golombek, M. P., Grant, J. A., Crumpler, L. S., Greeley, R., Arvidson, R. E., BellIII, J. F., Weitz, C. M., Sullivan, R., Christensen, P. R., Soderblom, L. A., and Squyres, S. W. (2006b). Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res., 111, doi:10.1029/2006JE002754.CrossRefGoogle Scholar
Goudy, C. L. and Schultz, R. A. (2005). Dike intrusions beneath grabens south of Arsia Mons, Mars. Geophys. Res. Lett., 32, doi:10.1029/2004GL021977.CrossRefGoogle Scholar
Grant, J. A., Arvidson, R., BellIII, J. F., Cabrol, N. A., Carr, M. H., Christensen, P., Crumpler, L. S., Des Marais, D. J., Ehlmann, B. L., Farmer, J., Golombek, M., Grant, F. D., Greeley, R., Herkenhoff, K., Li, R., McSween, H. Y., Ming, D. W., Moersch, J., RiceJr., J. W., Ruff, S., Richter, L., Squyres, S., Sullivan, R., and Weitz, C. (2004). Surficial deposits at Gusev crater along Spirit rover traverses. Science, 305, 807–810.CrossRefGoogle ScholarPubMed
Grimm, R. E. and Solomon, S. C. (1986). Tectonic tests of proposed polar wander paths for Mars and the Moon. Icarus, 65, 110–121.CrossRefGoogle Scholar
Grott, M. and Breuer, D. (2008). The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology. Icarus, 193, 503–515.CrossRefGoogle Scholar
Grott, M., Hauber, E., Werner, S. C., Kronberg, P., and Neukum, G. (2005). High heat flux on ancient Mars: Evidence from rift flank uplift at Coracis Fossae. Geophys. Res. Lett., 32, doi:10.1029/2005GL023894.CrossRefGoogle Scholar
Grott, M., Hauber, E., Werner, S. C., Kronberg, P., and Neukum, G. (2007a). Mechanical modeling of thrust faults in the Thaumasia region, Mars, and implications for the Noachian heat flux. Icarus, 186, 517–526.CrossRefGoogle Scholar
Grott, M., Kronberg, P., Hauber, E., and Cailleau, B. (2007b). Formation of the double rift system in the Thaumasia Highlands, Mars. J. Geophys. Res., 112, doi:10.1029/2006JE002800.CrossRefGoogle Scholar
Guest, A. and Smrekar, S. E. (2005). Relaxation of the Martian dichotomy boundary: Faulting in the Ismenius Region and constraints on the early evolution of Mars. J. Geophys. Res., 110, E12S25, doi:10.1029/2005JE002504.CrossRefGoogle Scholar
Hall, J. L., Solomon, S. C., and Head, J. W. (1986). Elysium Region, and Mars: Tests of lithospheric loading models for the formation of tectonic features. J. Geophys. Res., 91, 11 377–11 392.CrossRefGoogle Scholar
Hanna, J. C. and Phillips, R. J. (2006). Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars. J. Geophys. Res., 111, doi:10.1029/2005JE002546.CrossRefGoogle Scholar
Harder, H. (1998). Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle. J. Geophys. Res., 103, 16 775–16 797.CrossRefGoogle Scholar
Harder, H. (2000). Mantle convection and the dynamic geoid of Mars. Geophys. Res. Lett., 27, 301–304.CrossRefGoogle Scholar
Harder, H. and Christensen, U. (1996). A one-plume model of Martian mantle convection. Nature, 380, 507–509.CrossRefGoogle Scholar
Harrington, B. W., Phillips, R. J., and Golombek, M. P. (1999). Extension across Tempe Terra, Mars from MOLA topographic measurements (abs.). The Fifth International Conference on Mars, 6130. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Harris, S. A. (1977). The aureole of Olympus Mons. J. Geophys. Res., 82, 3099–3107.CrossRefGoogle Scholar
Hartmann, W. K. (1973). Martian surface and crust: Review and synthesis. Icarus, 19, 550–575.CrossRefGoogle Scholar
Hartmann, W. K. (2005). Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus, 174, 294–320, doi:10.1016/j.icarus.2004.11.023.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and evolution of Mars. Space Sci. Rev., 96, 165–194.CrossRefGoogle Scholar
Hartmann, W. K., Malin, M. C., McEwen, A. S., Carr, M. H., Soderblom, L., Thomas, P., Danielson, E., James, P., and Veverka, J. (1999). Evidence for recent volcanism on Mars from crater counts. Nature, 397, 586–589.CrossRefGoogle Scholar
Hauber, E. and Kronberg, P. (2001). Tempe Fossae, Mars: A Planetary analog to a terrestrial continental rift?J. Geophys. Res., 106, 20 587–20 602.CrossRefGoogle Scholar
Hauber, E. and Kronberg, P. (2005). The large Thaumasia graben on Mars: Is it a rift?J. Geophys. Res., 110, doi:10.1029/2005JE002407.CrossRefGoogle Scholar
HauckII, S. A. and Phillips, R. J. (2002). Thermal and crustal evolution of Mars. J. Geophys. Res., 107, doi:10.1029/2001JE001801.CrossRefGoogle Scholar
Head, J. W., Kreslavsky, M. A., and Pratt, S. (2002). Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res., 107, doi:10.1029/2000JE001445.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. (2004). The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data. J. Geophys. Res., 109, doi:10.1029/2003JE002143.CrossRefGoogle Scholar
Hood, L. L., Young, C. N., Richmond, N. C., and Harrison, K. P. (2005). Modeling of major Martian magnetic anomalies: Further evidence for polar reorientations during the Noachian. Icarus, 177, 144–173.CrossRefGoogle Scholar
Howard, A. D., Moore, J. M., and IrwinIII, R. P. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res., 110, doi:10.1029/2005JE002459.CrossRefGoogle Scholar
IrwinIII, R. P., Howard, A. D., Craddock, R. A., and Moore, J. M. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res., 110, doi:10.1029/2005JE002460.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (2006). Alba Patera, Mars: Topography, structure, and evolution of a unique late Hesperian – early Amazonian shield volcano. J. Geophys. Res., 111, doi:10.1029/2005JE002469.CrossRefGoogle Scholar
Jaeger, W. L., Keszthelyi, L. P., Mcewen, A. S., Dundas, C. M., and Russell, P. S. (2007). Athabasca Valles, Mars: A lava-draped channel system. Science, 317, 1709–1711.CrossRefGoogle ScholarPubMed
Jellinek, A. M., Johnson, C. L., and Schubert, G. (2008). Constraints on the elastic thickness, heatflow and melt production at early Tharsis from topography and magnetic field observations. J. Geophys. Res., 113, E09004, doi:10.1029/2007JE003005.CrossRefGoogle Scholar
Johnson, C. L. and Phillips, R. J. (2005). Evolution of the Tharsis region of Mars: Insights from magnetic field observations. Earth Planet. Sci. Lett., 230, 241–254.CrossRefGoogle Scholar
Kaula, W. M. (1975). The seven ages of a planet. Icarus, 26, 1–15.CrossRefGoogle Scholar
Kiefer, W. S., Bills, B. G., and Nerem, R. S. (1996). An inversion of gravity and topography for mantle and crustal structure on Mars. J. Geophys. Res., 101, 9239–9252.CrossRefGoogle Scholar
Kronberg, P., Hauber, E., Grott, M., Werner, S. C., Schäfer, T., Gwinner, K., Giese, B., Masson, P., and Neukum, G. (2007). Acheron Fossae, Mars: Tectonic rifting, volcanism, and implications for lithospheric thickness. J. Geophys. Res., 112, doi:10.1029/2006JE002780.CrossRefGoogle Scholar
Langlais, B., Purucker, M. E., and Mandea, M. (2004). Crustal magnetic field of Mars. J. Geophys. Res., 109, doi:10.1029/2003JE002048.CrossRefGoogle Scholar
Lee, D.-C. and Halliday, A. N. (1997). Core formation on Mars and differentiated asteroids. Nature, 388, 854–857.CrossRefGoogle Scholar
Lemoine, F. G., Smith, D. E., Rowlands, D. D., Zuber, M. T., Neumann, G. A., Chinn, D. S., and Pavlis, D. E. (2001). An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res., 106, 23 359–23 376.CrossRefGoogle Scholar
Lenardic, A., Nimmo, F., and Moresi, L. (2004). Growth of the hemispheric dichotomy and the cessation of plate tectonics on Mars. J. Geophys. Res., 109, doi:10.1029/2003JE002172.CrossRefGoogle Scholar
Leonard, G. J. and Tanaka, K. L. (2001). Geologic map of the Hellas region of Mars. U.S. Geol. Surv. Geol. Invest. Ser., Map I-2694.
Lopes, R. M., Guest, J. E., and Wilson, C. J. N. (1980). Origin of the Olympus Mons aureole and perimeter scarp. Moon and Planets, 22, 221–234.CrossRefGoogle Scholar
Lopes, R. M., Guest, J. E., Hiller, K., and Neukum, G. (1982). Further evidence for a mass movement origin for the Olympus Mons aureole. J. Geophys. Res., 87, 9917–9928.CrossRefGoogle Scholar
Lowry, A. R. and Zhong, S. (2003). Surface versus internal loading of the Tharsis rise. J. Geophys. Res., 108, doi:10.1029/2003JE002111.CrossRefGoogle Scholar
Lucchitta, B. K., McEwen, A. S., Clow, C. D., Geissler, R. B., Singer, R. B., Schultz, R. A., and Squyres, S. W. (1992). The canyon system on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Mangold, N., Allemand, P., and Thomas, P. G. (1998). Wrinkle ridges of Mars: Structural analysis and evidence for shallow deformation controlled by ice-rich decollements. Planet. Space Sci., 46, 345–356.CrossRefGoogle Scholar
Mangold, N., Allemand, P., Thomas, P. G., and Vidal, G. (2000). Chronology of compressional deformation on Mars: Evidence for a single and global origin. Planet. Space Sci., 48, 1201–1211.CrossRefGoogle Scholar
Marinova, M. M., Aharonson, O., and Asphaug, E. (2008). Mega-impact formation of the Mars hemispheric dichotomy. Nature, 453, 1216–1219.CrossRefGoogle ScholarPubMed
Masson, P. (1977). Structure pattern analysis of the Noctis Labyrinthus-Valles Marineris regions of Mars. Icarus, 30, 49–62.CrossRefGoogle Scholar
Matsuyama, I., Mitrovica, J. X., Manga, M., Perron, J. T., and Richards, M. A. (2006). Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res., 111, doi:10.1029/2005JE002447.CrossRefGoogle Scholar
Maxwell, T. A. (1982). Orientation and origin of ridges in the Lunae Palus-Coprates region of Mars. Proc. Lunar Planet. Sci. Conf. 13 J. Geophys. Res., 87, A97-A108.CrossRefGoogle Scholar
Maxwell, T. A. and McGill, G. E. (1988). Ages of fracturing and resurfacing in the Amenthes region, Mars. Proc. Lunar Planet. Sci. Conf. 18, 701–711.Google Scholar
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–586.CrossRefGoogle Scholar
McGill, G. E. and Dimitriou, A. M. (1990). Origin of the Martian global dichotomy by crustal thinning in the Late Noachian or Early Hesperian. J. Geophys. Res., 95, 2573–2759.CrossRefGoogle Scholar
McGill, G. E. and Squyres, S. W. (1991). Origin of the Martian crustal dichotomy: Evaluating hypotheses. Icarus, 93, 386–393.CrossRefGoogle Scholar
McGovern, P. J. and Solomon, S. C. (1993). State of stress, faulting and eruption characteristics of large volcanoes on Mars. J. Geophys. Res., 98, 23 553–23 579.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., Zuber, M. T., Simons, M., Wieczorek, M. A., Phillips, R. J., Neumann, G. A., Aharonson, O., and Head, J. W. (2002). Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. J. Geophys. Res., 107, doi:10.1029/2002JE001854.CrossRefGoogle Scholar
McGovern, P. J., Smith, J. R., Morgan, J. K., and Bulmer, M. H. (2004a). Olympus Mons aureole deposits: New evidence for a flank failure origin. J. Geophys. Res., 109, doi:10.1029/2004JE002258.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., Zuber, M. T., Simons, M., Wieczorek, M. A., Phillips, R. J., Neumann, G. A., Aharonson, O., and Head, J. W. (2004b). Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution.” J. Geophys. Res., 109, doi:10.1029/2004JE002286.CrossRefGoogle Scholar
McKenzie, D. and Nimmo, F. (1999). The generation of Martian floods by the melting of ground ice above dykes. Nature, 397, 231–233.CrossRefGoogle ScholarPubMed
McKenzie, D., Barnett, D. N., and Yuan, D.-N. (2002). The relationship between Martian gravity and topography. Earth Planet. Sci. Lett., 195, 1–16.CrossRefGoogle Scholar
McNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. J. Geophys. Res., 89, 11 180–11 194.CrossRefGoogle Scholar
Mege, D. and Masson, P. (1996a). A plume tectonics model for the Tharsis Province, Mars. Planet. Space Sci., 44, 1499–1546.CrossRefGoogle Scholar
Mege, D. and Masson, P. (1996b). Amounts of crustal stretching in Valles Marineris, Mars. Planet. Space Sci., 44, 749–781.CrossRefGoogle Scholar
Mege, D., Cook, A. C., Garel, E., Lagabrielle, Y., and Cormier, M. H. (2003). Volcanic rifting at Martian grabens. J. Geophys. Res., 108, doi:10.1029/2002JE001852.CrossRefGoogle Scholar
Melosh, H. J. (1980). Tectonic patterns on a reoriented planet: Mars. Icarus, 44, 745–751.CrossRefGoogle Scholar
Milbury, C. A. E., Smrekar, S. E., Raymond, C. A., and Schubert, G. (2007). Lithospheric structure in the eastern region of Mars' dichotomy boundary. Planet. Space Sci., 55, 280–288.CrossRefGoogle Scholar
Mitchell, D. L., Lillis, R. J., Lin, R. P., Connerney, J. E. P., and Acuña, M. H. (2007). A global map of Mars' crustal magnetic field based on electron reflectometry. J. Geophys. Res., 112, doi:10.1029/2005JE002564.CrossRefGoogle Scholar
Montesi, L. G. J. and Zuber, M. T. (2003). Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. J. Geophys. Res., 108, doi:10.1029/2002JE001974.CrossRefGoogle Scholar
Moore, H. J. (2001). Geologic map of the Tempe-Mareotis region of Mars. U.S. Geol. Surv. Geol. Invest. Ser., Map I-2727.
Morris, E. C. and Tanaka, K. L. (1994). Geologic maps of the Olympus Mons region of Mars. U.S. Geol. Surv. Misc. Invest. Ser., Map I-2327-B.
Mouginis-Mark, P. J. (1981). Late-stage summit activity of Martian shield volcanoes. Proc. Lunar Planet. Sci. Conf. 12, 1431–1447.Google Scholar
Mouginis-Mark, P. J., Wilson, L., Head, J. W., Brown, S. H., Hall, J. L., and Sullivan, K. (1984). Elysium Planitia, Mars: Regional geology, volcanology, and evidence for volcano-ground interactions. Earth, Moon and Planets, 30, 149–173.CrossRefGoogle Scholar
Mueller, K. and Golombek, M. P. (2004). Compressional structures on Mars. Annu. Rev. Earth Planet. Sci., 32, 435–464, doi:10.1146/annurev.earth.32.101802.120553.CrossRefGoogle Scholar
Mustard, J. F., Murchie, S. L., Pelkey, S. M., Ehlmann, B. L., Milliken, R. E., Grant, J. A., Bibring, J.-P., Poulet, F., Bishop, J., Noe Dobrea, E., Roach, L., Seelos, F., Arvidson, R. E., Wiseman, S., Green, R., Hash, C., Humm, D., Malaret, E., McGovern, J. A., Seelos, K., Clancy, T., Clark, R., Des Marais, D., Izenberg, N., Knudson, A., Langevin, Y., Martin, T., McGuire, P., Morris, R., Robinson, M., Roush, T., Smith, M., Swayze, G., Taylor, H., Titus, T., and Wolff, M. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454, 305–309.CrossRefGoogle ScholarPubMed
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., McGovern, P. J., Lemoine, F. G., and Smith, D. E. (2004). Crustal structure of Mars from gravity and topography. J. Geophys. Res., 109, E08002, doi:10.1029/2004JE002262.CrossRefGoogle Scholar
Neumann, G. A., Lemoine, F. G., Smith, D. E., and Zuber, M. T. (2008). Marscrust3-a crustal thickness inversion from recent MRO gravity solutions (abs.). Lunar Planet. Sci. Conf. XXXIX, 2167. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Nimmo, F. (2002). Admittance estimates of mean crustal thickness and density at the Martian hemispheric dichotomy. J. Geophys. Res., 107, doi:10.1029/2000JE001488.CrossRefGoogle Scholar
Nimmo, F. (2005). Tectonic consequences of Martian dichotomy modification by lower-crustal flow and erosion. Geology, 33, 533–536.CrossRefGoogle Scholar
Nimmo, F. and Stevenson, D. J. (2001). Estimates of Martian crustal thickness from viscous relaxation of topography. J. Geophys. Res., 106, 5085–5098.CrossRefGoogle Scholar
Nimmo, F. and Tanaka, K. L. (2005). Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci., 33, 133–161.CrossRefGoogle Scholar
Nimmo, F., Hart, S. D., Korycansky, D. G., and Agnor, C. B. (2008). Implications of an impact origin for the Martian hemispheric dichotomy. Nature, 453, 1220–1223.CrossRefGoogle ScholarPubMed
Okubo, C. H. and Schultz, R. A. (2003). Thrust fault vergence directions on Mars: A foundation for investigating global-scale Tharsis-driven tectonics. Geophys. Res. Lett., 30, 2154, doi:10.1029/2003GL018664.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2004). Mechanical stratigraphy in the western equatorial region of Mars based on thrust fault-related fold topography and implications for near-surface volatile reservoirs. GSA Bulletin, 116, 594–605, doi:10.1130/B25361.1.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2006). Variability in Early Amazonian Tharsis stress state based on wrinkle ridges and strike-slip faulting. J. Struct. Geol., 28, 2169–2181.CrossRefGoogle Scholar
Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I., and Richards, M. A. (2007). Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature, 447, 840–843.CrossRefGoogle ScholarPubMed
Peulvast, J. P. and Masson, P. L. (1993a). Erosion and tectonics in central Valles Marineris (Mars): A new morpho-structural model. Earth, Moon and Planets, 61, 191–217.CrossRefGoogle Scholar
Peulvast, J. P. and Masson, P. L. (1993b). Melas Chasma: Morphology and tectonic patterns in central Valles Marineris (Mars). Earth, Moon and Planets, 61, 219–248.CrossRefGoogle Scholar
Phillips, R. J. and Lambeck, K. (1980). Gravity fields of the terrestrial planets: Long-wavelength anomalies and tectonics. Rev. Geophys. Space Phys., 18, 27–76.CrossRefGoogle Scholar
Phillips, R. J., Saunders, R. S., and Conel, J. E. (1973). Mars: Crustal structure inferred from Bouguer gravity anomalies. J. Geophys. Res., 78, 4815–4820.CrossRefGoogle Scholar
Phillips, R. J., Sleep, N. H., and Banerdt, W. B. (1990). Permanent uplift in magmatic systems with application to the Tharsis region of Mars. J. Geophys. Res., 95, 5089–5100.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., Golombek, M. P., Jakosky, B. M., Banerdt, W. B., Smith, D. E., Williams, R. M. E., Hynek, B. M., Aharonson, O., and HauckI, S. A. (2001). Ancient geodynamics and global-scale hydrology on Mars. Science, 291, 2587–2591.CrossRefGoogle ScholarPubMed
Phillips, R. J., Johnson, C. L., and Dombard, A. J. (2004). Localized Tharsis loading on Mars: Testing the membrane surface hypothesis (abs.). Lunar Planet Sci. Conf. XXXV, 1427. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Phillips, R. J., Zuber, M. T., Smrekar, S. E., Mellon, M. T., Head, J. W., Tanaka, K. L., Putzig, N. E., Milkovich, S. M., Campbell, B. A., Plaut, J. J., Safaeinili, A., Seu, R., Biccari, D., Carter, L. M., Picardi, G., Orosei, R., Mohit, P. S., Heggy, E., Zurek, R. W., Egan, A., Giacomoni, E., Russo, F., Cutigni, M., Pettinelli, E., Holt, J. W., Leuschen, C. J., and Marinangeli, L. (2008). Mars north polar deposits: Stratigraphy, age and geodynamical response. Science, 230, 1182–1185.CrossRefGoogle Scholar
Plescia, J. B. (1991a). Graben and extension in northern Tharsis, Mars. J. Geophys. Res., 96, 18 883–18 895.CrossRefGoogle Scholar
Plescia, J. B. (1991b). Wrinkle ridges in Lunae Planum, Mars: Implications for shortening and strain. Geophys. Res. Lett., 18, 913–916.CrossRefGoogle Scholar
Plescia, J. B. (1993). Wrinkle ridges of Arcadia Planitia, Mars. J. Geophys. Res., 98, 15 049–15 059.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 97, 1289–1299.2.0.CO;2>CrossRefGoogle Scholar
Plescia, J. B. and Saunders, R. S. (1982). Tectonic history of the Tharsis Region, Mars. J. Geophys. Res., 87, 9775–9791.CrossRefGoogle Scholar
Pruis, M. J. and Tanaka, K. L. (1995). The Martian northern plains did not result from plate tectonics (abs.). Lunar Planet. Sci. Conf. XXVI. Houston, TX: Lunar and Planetary Institute, 1147–1148.Google Scholar
Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuña, M. (2000). An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett., 27, 2449–2452.CrossRefGoogle Scholar
Quesnel, Y., Langlais, B., and Sotin, C. (2007). Local inversion of magnetic anomalies: Implication for Mars' crustal evolution. Planet. Space Sci., 55, 258–269.CrossRefGoogle Scholar
Raitala, J. (1988). Superposed ridges of the Hesperia Planum Area on Mars. Earth, Moon and Planets, 40, 71–99.CrossRefGoogle Scholar
Raitala, J. and Kauhanen, K. (1989). Tectonics of Syrtis Major Planum on Mars. Earth, Moon and Planets, 46, 243–260.CrossRefGoogle Scholar
Redmond, H. L. and King, S. D. (2004). A numerical study of a mantle plume beneath the Tharsis Rise: Reconciling dynamic uplift and lithospheric support models. J. Geophys. Res., 109, doi:10.1029/2003JE002228.CrossRefGoogle Scholar
Reese, C. C., Solomatov, V. S., Baumgardner, J. R., Stegman, D. R., and Vezolainen, A. V. (2004). Magmatic evolution of impact-induced Martian mantle plumes and the origin of Tharsis. J. Geophys. Res., 109, doi:10.1029/2003JE002222.CrossRefGoogle Scholar
Roberts, J. H. and Zhong, S. (2004). Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J. Geophys. Res., 109, doi:10.1029/2003JE002226.CrossRefGoogle Scholar
Roberts, J. H. and Zhong, S. (2006). Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res., 111, doi:10.1029/2005JE002668.CrossRefGoogle Scholar
Roberts, J. H. and Zhong, S. (2007). The cause for the north–south orientation of the crustal dichotomy and the equatorial location of Tharsis on Mars. Icarus, 190, 24–31.CrossRefGoogle Scholar
Sandwell, D. T., Johnson, C. L., Bilotti, F., and Suppe, J. (1997). Driving forces for limited tectonics on Venus. Icarus, 129, 232–244.CrossRefGoogle Scholar
Schubert, G., Solomon, S. C., Turcotte, D. L., Drake, M. J., and Sleep, N. H. (1992). Origin and thermal evolution of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 147–183.Google Scholar
Schultz, R. A. (1989). Strike-slip faulting of ridged plains near Valles Marineris, Mars. Nature, 341, 424–428.CrossRefGoogle Scholar
Schultz, R. A. (1991). Structural development of Coprates Chasma and western Ophir Planum. J. Geophys. Res., 96, 22 777–22 792.CrossRefGoogle Scholar
Schultz, R. A. (1995). Gradients in extension and strain at Valles Marineris. Planet. Space Sci., 43, 1561–1566.CrossRefGoogle Scholar
Schultz, R. A. (1998). Multiple-process origin of Valles Marineris basins and troughs. Planet. Space Sci., 46, 827–834.CrossRefGoogle Scholar
Schultz, R. A. (2000). Localization of bedding-plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12 035–12 052.CrossRefGoogle Scholar
Schultz, R. A. and Lin, J. (2001). Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamic implications. J. Geophys. Res., 106, 16 549–16 566.CrossRefGoogle Scholar
Schultz, R. A. and Tanaka, K. L. (1994). Lithospheric-scale buckling and thrust structures on Mars: The Coprates rise and south Tharsis ridge belt. J. Geophys. Res., 99, 8371–8385.CrossRefGoogle Scholar
Schultz, R. A., Okubo, C. H., Goudy, C. L., and Wilkins, S. J. (2004). Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geology, 32, 889–892.CrossRefGoogle Scholar
Schultz, R. A., Moore, J. M., Grosfils, E. B., Tanaka, K. L., and Mège, D. (2007). The Canyonlands model for planetary grabens: Revised physical basis and implications. In The Geology of Mars: Evidence from Earth-Based Analogs, ed. Chapman, M.. Cambridge: Cambridge University Press, pp. 371–399.CrossRefGoogle Scholar
Scott, D. H. and Dohm, J. M. (1990a). Chronology and global distribution of fault and ridge systems on Mars. Proc. Lunar Planet. Sci. Conf. 20. Houston, TX: Lunar and Planetary Institute, 487–501.Google Scholar
Scott, D. H. and Dohm, J. M. (1990b). Faults and ridges: Historical development in Tempe Terra and Ulysses Patera regions of Mars. Proc. Lunar Planet. Sci. Conf. 20. Houston, TX: Lunar and Planetary Institute, 503–513.Google Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. U.S. Geol. Surv. Map I-1802-A.
Scott, E. D. and Wilson, L. (2002). Plinian eruptions and passive collapse events as mechanisms of formation for Martian pit chain craters. J. Geophys. Res., 107, doi:10.1029/2000JE001432.CrossRefGoogle Scholar
Scott, E. D., Wilson, L., and HeadIII, J. W. (2002). Emplacement of giant radial dikes in the northern Tharsis region of Mars. J. Geophys. Res., doi:10.1029/2000JE001431.CrossRefGoogle Scholar
Searls, M. L. and Phillips, R. J. (2007). Tectonics of Utopia Basin, Mars: Results from finite element loading models (abs.). Lunar Planet. Sci. Conf. XXXVIII, 1965. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Searls, M. L., Banerdt, W. B., and Phillips, R. J. (2006). Utopia and Hellas basins, Mars: Twins separated at birth. J. Geophys. Res., 111, doi:10.1029/2005JE002666.CrossRefGoogle Scholar
Segura, T. L., Toon, O. B., Colaprete, A., and Zahnle, K. (2002). Environmental effects of large impacts on Mars. Science, 298, 1977–1980.CrossRefGoogle ScholarPubMed
Sleep, N. H. (1994). Martian plate tectonics. J. Geophys. Res., 99, 5639–5655.CrossRefGoogle Scholar
Sleep, N. H. and Tanaka, K. L. (1995). Point-counterpoint: Did Mars have plate tectonics?Mercury, 24, 10–11.Google Scholar
Smith, D. E., Sjogren, W. L., Tyler, G. L., Balmino, G., Lemoine, F. G., and Konopliv, A. S. (1999a). The gravity field of Mars: Results from Mars Global Surveyor. Science, 286, 94–97.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettingill, G. H., Neumann, G. A., Lemoine, F. G., Abshire, J. B., Aharonson, O., Brown, C. D., HauckII, S. A., Ivanov, A. B., McGovern, P. J., Zwally, H. J., and Duxbury, T. C. (1999b). The global topography of Mars and implications for surface evolution. Science, 284, 1495–1503.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., Pettingill, G. H., Phillips, R. J., Solomon, S. C., Zwally, H. J., Banerdt, W. B., Duxbury, T. C., Golombek, M. P., Lemoine, F. G., Neumann, G. A., Rowlands, D. D., Aharonson, O., Ford, P. G., Ivanov, A. B., Johnson, C. L., McGovern, P. J., Abshire, J. B., Afzal, R. S., and Sun, X. (2001). Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106, 23 689–23 722.CrossRefGoogle Scholar
Smrekar, S. E., McGill, G. E., Raymond, C. A., and Dimitriou, A. M. (2004). Geologic evolution of the Martian dichotomy in the Ismenius area of Mars and implications for plains magnetization. J. Geophys. Res., 109, doi:10.1029/2004JE002260.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1980). Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys., 18, 107–141.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1982). Evolution of the Tharsis province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res., 87, 9755–9774.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1990). Heterogeneities in the thickness of the elastic lithosphere of Mars: Constraints on heat flow and internal dynamics. J. Geophys. Res., 95, 11 073–11 083.CrossRefGoogle Scholar
Solomon, S. C., Aharonson, O., Aurnou, J. M., Banerdt, W. B., Carr, M. H., Dombard, A. J., Frey, H. V., Golombek, M. P., HauckII, S. A., HeadIII, J. W., Jakosky, B. M., Johnson, C. L., McGovern, P. J., Neumann, G. A., Phillips, R. J., Smith, D. E., and Zuber, M. T. (2005). New perspectives on ancient Mars. Science, 307, 1214–1220.CrossRefGoogle ScholarPubMed
Solomon, S. C., McNuttJr., R. L., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A., and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER's first Mercury flyby. Science, 321, 59–62.CrossRefGoogle ScholarPubMed
Spohn, T., Acuña, M. H., Breuer, D., Golombek, M. P., Greeley, R., Halliday, A., Hauber, E., Jaumann, R., and Sohl, F. (2001). Geophysical constraints on the evolution of Mars. Space Sci. Rev., 96, 231–262.CrossRefGoogle Scholar
Sprenke, K. F., Baker, L. L., and Williams, A. F. (2005). Polar wander on Mars: Evidence in the geoid. Icarus, 174, 486–489.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., BellIII, J. F., Calvin, W., Christensen, P. R., Clark, B. C., Crisp, J. A., Farrand, W. H., Herkenhoff, K. E., and Johnson, J. R. (2004). In-situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Blaney, D. L., Clark, B. C., Crumpler, L., Farrand, W. H., Gorevan, S., Herkenhoff, K. E., Hurowitz, J., Kusack, A., McSween, H. Y., Ming, D. W., Morris, R. V., Ruff, S. W., Wang, A., and Yen, A. (2006). Rocks of the Columbia Hills. J. Geophys. Res., 111, doi:10.1029/2005JE002562.CrossRefGoogle Scholar
Suppe, J. and Medwedeff, D. A. (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geo. Helv., 83, 409–454.Google Scholar
Tanaka, K. L. (1985). Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus, 62, 191–206.CrossRefGoogle Scholar
Tanaka, K. L. (1986). The stratigraphy of Mars. Proc. Lunar and Planet. Sci. Conf. 17. J. Geophys. Res., 91, E139–E158.CrossRefGoogle Scholar
Tanaka, K. L. (1990). Tectonic history of the Alba Patera-Ceraunius Fossae region of Mars. Proc. Lunar Planet. Sci. Conf. 20. Houston, TX: Lunar and Planetary Institute, 515–523.Google Scholar
Tanaka, K. L. and Chapman, M. G. (1990). The relation of catastrophic flooding of Mangala Valles, Mars, to faulting of Menmonia Fossae and Tharsis volcanism. J. Geophys. Res., 95, 14 315–14 323.CrossRefGoogle Scholar
Tanaka, K. L. and Davis, P. A. (1988). Tectonic history of the Syria Planum province of Mars. J. Geophys. Res., 93, 14 893–14 917.CrossRefGoogle Scholar
Tanaka, K. L. and Golombek, M. P. (1989). Martian tension fractures and the formation of grabens and collapse features at Valles Marineris. Proc. Lunar Planet. Sci. Conf. 19, 383–396.Google Scholar
Tanaka, K. L. and Hartmann, W. K. (2008). The planetary timescale. The Concise Geologic Time Scale, ed. Ogg, J. G., Ogg, G. M. and Gradstein, F. M.. New York: Cambridge University Press, pp. 13–22.Google Scholar
Tanaka, K. L. and Leonard, G. J. (1995). Geology and landscape evolution of the Hellas region of Mars. J. Geophys. Res., 100, 5407–5432.CrossRefGoogle Scholar
Tanaka, K. L., Golombek, M. P., and Banerdt, W. B. (1991). Reconciliation of stress and structural histories of the Tharsis region of Mars. J. Geophys. Res., 96, 15 617–15 633.CrossRefGoogle Scholar
Tanaka, K. L., SkinnerJr., J. A., Hare, T. M., Joyal, T., and Wenker, A. (2003). Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res., 108, doi:10.1029/2002JE001908.CrossRefGoogle Scholar
Tanaka, K. L., SkinnerJr., J. A., and Hare, T. M. (2005). Geologic map of the northern plains of Mars. U.S. Geol. Surv., Map SIM-2888.
Tate, A., Mueller, K., and Golombek, M. P. (2002a). Kinematics and structural inversion of wrinkle ridges on Lunae and Solis Planum: Implications for the early history of Tharsis (abs.). Lunar Planet. Sci. Conf. XXXIII, 1828. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Tate, A., Mueller, K. J., and Golombek, M. P. (2002b). Geometry and kinematics of wrinkle ridges on Lunae and Solis Planum: Implications for fault/fold growth history (abs.). Lunar Planet. Sci. Conf. XXXIII, 1836. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Thomas, P. G. and Allemand, P. (1993). Quantitative analysis of the extensional tectonics of the Tharsis bulge, Mars: Geodynamic implications. J. Geophys. Res., 98, 13 097–13 108.CrossRefGoogle Scholar
Thomas, P. J., Squyres, S. W., and Carr, M. H. (1990). Flank tectonics of Martian volcanoes. J. Geophys. Res., 95, 14 345–14 355.CrossRefGoogle Scholar
Thomson, B. J. and Head, J. W. (2001). Utopia basin, Mars: Characterization of topography and morphology and assessment of the origin and evolution of basin internal structure. J. Geophys. Res., 106, 23 209–23 230.CrossRefGoogle Scholar
Turcotte, D. L., Willemann, R. J., Haxby, W. F., and Norberry, J. (1981). Role of membrane stress in the support of planetary topography. J. Geophys. Res., 86, 3951–3959.CrossRefGoogle Scholar
Thienen, P., Rivoldini, A., Hoolst, T., and Lognonné, P. (2006). A top-down origin for Martian mantle plumes. Icarus, 185, 197–210.Google Scholar
Vidal, A., Mueller, K., and Golombek, M. P. (2003). Axial surface mapping of wrinkle ridges on Solis Planum, Mars from MOLA topography: Constraints on subsurface blind thrust geometry (abs.). Lunar Planet. Sci. Conf. XXXIV, 1125. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Vidal, A., Mueller, K. M., and Golombek, M. P. (2005). Geometry of thrust faults beneath Amenthes Rupes, Mars (abs.). Lunar Planet. Sci. Conf. XXXVI, 2333. Houston, TX: Lunar and Planetary Institute (CD-ROM).Google Scholar
Vlasov, V. Z. (1964). General Theory of Shells and Its Applications in Engineering. NASA Tech. Trans. T T F-99.
Ward, P. D. and Brownlee, D. (2000). Rare Earth. New York: Springer-Verlag.Google Scholar
Ward, P. D. and Brownlee, D. (2002). The Life and Death of Planet Earth. New York: H. Holt.Google Scholar
Watters, T. R. (1988). Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res., 93, 10 236–10 254.CrossRefGoogle Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis Plateau of Mars. J. Geophys. Res., 96, 15 599–15 616.CrossRefGoogle Scholar
Watters, T. R. (1992). System of tectonic features common to Earth, Mars, and Venus. Geology, 20, 609–612.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98, 17 049–17 060.CrossRefGoogle Scholar
Watters, T. R. (2003a). Lithospheric flexure and the origin of the dichotomy boundary on Mars. Geology, 31, 271–274.2.0.CO;2>CrossRefGoogle Scholar
Watters, T. R. (2003b). Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. J. Geophys. Res., 108, doi:10.1029/2002JE001934.CrossRefGoogle Scholar
Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171, 284–294.CrossRefGoogle Scholar
Watters, T. R. and Maxwell, T. A. (1986). Orientation, relative age, and extent of the Tharsis plateau ridge system. J. Geophys. Res., 91, 8113–8125.CrossRefGoogle Scholar
Watters, T. R. and Robinson, M. S. (1997). Radar and photoclinometric studies of wrinkle ridges on Mars. J. Geophys. Res., 102, 10 889–10 903.CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., and Robinson, M. S. (2000). Displacement–length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophys. Res. Lett., 27, 3659–3662.CrossRefGoogle Scholar
Weissel, J. K. and Karner, G. D. (1989). Flexural uplift of rift flanks due to mechanical unloading of the lithophere during extension. J. Geophys. Res., 94, 13 919–13 950.CrossRefGoogle Scholar
Wenzel, M. J., Manga, M., and Jellinek, A. M. (2004). Tharsis as a consequence of Mars' dichotomy and layered mantle. Geophys. Res. Lett., 31, doi:10.1029/2003GL019306.CrossRefGoogle Scholar
Wichman, R. W. and Schultz, P. H. (1989). Sequence and mechanisms of deformation around the Hellas and Isidis impact basins on Mars. J. Geophys. Res., 94, 17 333–17 357.CrossRefGoogle Scholar
Wieczorek, M. A. and Zuber, M. T. (2004). Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res., 109, doi:01010.01029/02003JE002153.CrossRefGoogle Scholar
Wilhems, D. E. and Squyres, S. W. (1984). The Martian hemispheric dichotomy may be due to a giant impact. Nature, 309, 138–140.CrossRefGoogle Scholar
Wilkins, S. J. and Schultz, R. A. (2003). Cross faults in extensional settings: Stress triggering, displacements localization, and implications for the origin of blunt troughs at Valles Marineris. J. Geophys. Res., 108, doi:10.1029/2002JE001968.CrossRefGoogle Scholar
Willemann, R. J. (1984). Reorientation of planets with elastic lithospheres. Icarus, 60, 701–709.CrossRefGoogle Scholar
Wilson, L. and HeadIII, J. W. (2002). Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: Models and implications. J. Geophys. Res., 107, doi:10.1029/2001JE001593.CrossRefGoogle Scholar
Wise, D. U. (1974). Continental margins, freeboard and the volume of continents and oceans through time. In The Geology of Continental Margins, ed. Burk, C. A. and Drake, C. L.. New York: Springer Verlag, pp. 45–58.CrossRefGoogle Scholar
Wise, D. U., Golombek, M. P., and McGill, G. E. (1979). Tharsis province of Mars: Geologic sequence, geometry, and a deformation mechanism. Icarus, 38, 456–472.CrossRefGoogle Scholar
Witbeck, N. E., Tanaka, K. L., and Scott, D. H. (1991). Geologic map of the Valles Marineris region, Mars (East Half And West Half): 1:2M. U.S. Geol. Surv. Misc. Invest. Ser., Map I-2010.
Withers, P. and Neumann, G. A. (2001). Enigmatic northern plains of Mars. Nature, 410, 651.CrossRefGoogle ScholarPubMed
Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., and Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res., 109, doi:10.1029/2004JE002240.CrossRefGoogle Scholar
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M., and Folkner, W. M. (2003). Fluid core size of Mars from detection of the solar tide. Science, 300, 299–303.CrossRefGoogle ScholarPubMed
Yuan, D. N., Sjogren, W. L., Konopliv, A. S., and Kucinskas, A. B. (2001). Gravity field of Mars: A 75th degree and order model. J. Geophys. Res., 106, 23 377–23 401.CrossRefGoogle Scholar
Zhong, S. (2002). Effects of lithosphere on the long-wavelength gravity anomalies and their implications for the formation of the Tharsis rise on Mars. J. Geophys. Res., 107, doi:10.1029/2001JE001589.CrossRefGoogle Scholar
Zhong, S. and Roberts, J. H. (2003). On the support of the Tharsis rise on Mars. Earth Planet. Sci. Lett., 214, 1–9.CrossRefGoogle Scholar
Zhong, S. and Zuber, M. T. (2001). Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett., 189, 75–84.CrossRefGoogle Scholar
Zuber, M. T. (1995). Wrinkle ridges, reverse faulting and the depth penetration of lithospheric strain in Lunae Planum, Mars. Icarus, 114, 80–92.CrossRefGoogle Scholar
Zuber, M. T. (2001). The crust and mantle of Mars. Nature, 412, 220–227.CrossRefGoogle ScholarPubMed
Zuber, M. T. and Aist, L. L. (1990). The shallow structure of the Martian lithosphere in the vicinity of the ridged plains. J. Geophys. Res., 95, 14 215–14 230.CrossRefGoogle Scholar
Zuber, M. T. and Mouginis-Mark, P. J. (1992). Caldera subsidence and magma chamber depth of Olympus Mons volcano, Mars. J. Geophys. Res., 97, 18 295–18 307.CrossRefGoogle Scholar
Zuber, M. T. and Smith, D. E. (1997). Mars without Tharsis. J. Geophys. Res., 102, 28 673–28 685.CrossRefGoogle Scholar
Zuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E., Tyler, G. L., Aharonson, O., Balmino, G., Banerdt, W. B., Head, J. W., Johnson, C. L., Lemoine, F. G., McGovern, P. J., Neumann, G. A., Rowlands, D. D., and Zhong, S. (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–1793.CrossRefGoogle ScholarPubMed
Zuber, M. T., Phillips, R. J., Andrews-Hanna, J. C., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Plaut, J. J., Smith, D. E., and Smrekar, S. E. (2007). Density of Mars' south polar layered deposits. Science, 317, 1718–1719.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mars tectonics
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mars tectonics
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mars tectonics
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.006
Available formats
×