Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T11:48:14.338Z Has data issue: false hasContentIssue false

10 - Water

Published online by Cambridge University Press:  05 June 2012

H. Jay Melosh
Affiliation:
Purdue University, Indiana
Get access

Summary

All indurated rocks and most earths are bound together by a force of cohesion which must be overcome before they can be divided and removed. The natural processes by which the division and removal are accomplished make up erosion. They are called disintegration and transportation. Transportation is chiefly performed by running water.

…A portion of the water of rains flows over the surface and is quickly gathered into streams. A second portion is absorbed by the earth or rock on which it falls, and after a slow underground circulation reissues in springs. Both transport the products of weathering, the latter carrying dissolved minerals and the former chiefly undissolved.

G.K.Gilbert, Geology of the Henry Mountains (1880)

The Earth’s surface is dominated by landforms that have been carved by running water. Fluvial landforms are usually apparent in even the driest deserts. Running water is such an effective agent of erosion because of its density: Almost 1000 times denser than air, it exerts greater shear stress, buoys the weight of entrained particles, and is driven more forcefully by gravity than an equivalent volume of air.

Where rainfall is possible, even small amounts of water trump any other agent of erosion. Although rain is not possible on Mars under current conditions, its landscape plainly bears the scars of rainfall in the distant past. Some things are different: Mars has seen enormous floods that are comparable to the largest floods known on Earth, and groundwater sapping plays (or played) a far larger role than it does on our planet. We still do not understand how Mars’ floods originated or how such large volumes of water came to be suddenly released. Nevertheless, once released, the water followed the same laws as water on Earth and produced landforms for which terrestrial analogs exist.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Water
  • H. Jay Melosh, Purdue University, Indiana
  • Book: Planetary Surface Processes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977848.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Water
  • H. Jay Melosh, Purdue University, Indiana
  • Book: Planetary Surface Processes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977848.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Water
  • H. Jay Melosh, Purdue University, Indiana
  • Book: Planetary Surface Processes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977848.011
Available formats
×