Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:46:21.912Z Has data issue: false hasContentIssue false

3 - The Rings of Saturn

from II - Ring Systems by Location

Published online by Cambridge University Press:  26 February 2018

J. N. Cuzzi
Affiliation:
NASA Ames Research Center Moffett Field, California, USA
G. Filacchione
Affiliation:
INAF-IAPS Institute for Space Astrophysics and Planetology Rome, ITALY
E. A. Marouf
Affiliation:
San Jose State University San Jose, California, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION

One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or “gap” between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure.

This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009).

This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the reader, we will frequently refer to the above review articles instead of directly to the primary literature they discuss. We will focus on new work since 2010, within a general context, and will connect our high-level discussions with more detailed chapters in this volume.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 51 - 92
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, N., Sremčević, M., Colwell, J. E., and Esposito, L. W. 2012. Saturn's F ring as seen by Cassini UVIS: Kinematics and statistics. Icarus, 217, 367-388.CrossRefGoogle Scholar
Alexander, A. F. O. 1962. The Planet Saturn: a History of Observation, Theory, and Discovery. New York, Macmillan.Google Scholar
Asphaug, E., and Reufer, A. 2013. Late origin of the Saturn system. Icarus, 223, 544-565.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Cooper, N. J., and Williams, G. A. 2012. Detection of low-velocity collisions in Saturn's F Ring. Astrophys. J. Lett., 755, L27.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Williams, G. A., and Cooper, N. J. 2014. A survey of low-velocity collisional features in Saturn's F ring. Icarus, 227, 56-66.CrossRefGoogle Scholar
Baillie, K., Colwell, J. E., Lissauer, J. J., Esposito, L. W., and Sremčević, M. 2011. Waves in Cassini UVIS stellar occultations. 2. The C ring. Icarus, 216, 292-308.CrossRefGoogle Scholar
Baillie, K., Colwell, J. E., Esposito, L. W., and Lewis, M. C. 2013. Meter-sized moonlet population in Saturn's C ring and Cassini Division. Astron. J., 145, 171.CrossRefGoogle Scholar
Becker, T. M., Colwell, J. E., Esposito, L. W., and Bratcher, A. D. 2016. Characterizing the particle size distribution of Saturn's A ring with Cassini UVIS occultation data. Icarus, 279, 20-35.CrossRefGoogle Scholar
Beurle, K., Murray, C. D., Williams, G. A., et al. 2010. Direct evidence for gravitational instability and moonlet formation in Saturn's rings. Astrophys. J. Lett., 718, L176-L180.CrossRefGoogle Scholar
Bobrov, M. S. 1970. The Rings of Saturn. Moskva: Nauka.Google Scholar
Bodrova, A., Schmidt, J., Spahn, R., and Brilliantov, N. 2012. Adhesion and collisional release of particles in dense planetary rings. Icarus, 218, 60-68.CrossRefGoogle Scholar
Boduch, P., da Silveira, E. P., Domaracka, A., et al. 2011. Production of oxidants by ion bombardment of icy moons in the outer solar system. Advances in Astronomy, 2011, 327641.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1985. A granular flow model for dense planetary rings. Icarus, 63, 406—420.CrossRefGoogle Scholar
Bosh, A. S., Olkin, C. B., French, R. G., and Nicholson, P. D. 2002. Saturn's F ring: Kinematics and particle sizes from stellar occultation studies. Icarus, 157, 57-75.CrossRefGoogle Scholar
Bradley, E. X., ColweU, J. E., Esposito, L. W., et al. 2010. Far ultraviolet spectral properties of Saturn's rings from Cassini UVIS. Icarus, 206, 458-466.Google Scholar
Bradley, E. X., ColweU, J. E., and Esposito, L. W.2013. Scattering properties of Saturn's rings in the far ultraviolet from Cassini UVIS spectra. Icarus, 225, 726-739.
Brilliantov, N., Krapivsky, P., Bodrova, A., et al. 2013. Size distribution of particles in Saturn's rings from aggregation and fragmentation. arXiv: 1302. 4097.
Bromley, B. C., and Kenyon, S. J. 2013. Migration of small moons in Saturn's rings. Astrophys. J., 764, 192.CrossRefGoogle Scholar
Brooks, S. M., Esposito, L. W., Showalter, M. R., and Throop, H. B. 2004. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, 170, 35-57.CrossRefGoogle Scholar
Burns, J. A., Showalter, M. R., and Morfill, G. E. 1984. The ethereal rings of Jupiter and Saturn. Pages 200—272 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Burns, J. A., Simonelli, D. P., Showalter, M. R., et al. 2004. Jupiter's ring-moon system. Pages 241-262 of: Bangeral, F., Dowling, X. E., and McKinnon, W. B.(eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press.Google Scholar
Canup, R. M. 2010. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943-946.CrossRefGoogle ScholarPubMed
Canup, R. M., and Esposito, L. W. 1995. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus, 113, 331—352.CrossRefGoogle Scholar
Canup, R. M., and Ward, W. R. 2002. Formation of the Galilean satellites: Conditions of accretion. Astron. J., 124, 3404-3423.CrossRefGoogle Scholar
Canup, R. M., and Ward, W. R. 2006. A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834-839.CrossRefGoogle ScholarPubMed
Caudal, G. V. 2013. The role of tidal torques on the evolution of the system of Saturn's co-orbital satellites Janus and Epimetheus. Icarus, 223, 733-740.CrossRefGoogle Scholar
Chandrasekhar, S. 1960. Radiative Transfer. New York, Dover.Google Scholar
Charnoz, S. 2009. Physical collisions of moonlets and clumps with the Saturn's F-ring core. Icarus, 201, 191-197.CrossRefGoogle Scholar
Charnoz, S., Porco, C. C., Deau, E., et al. 2005. Cassini discovers a kinematic spiral ring around Saturn. Science, 310, 1300—1304.CrossRefGoogle ScholarPubMed
Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R., and Hed-man, M. M. 2009. Origin and evolution of Saturn's ring system. Page 537 of: Dougherty, M. K., Esposito, L. W., and Krim-igis, S. M. (eds.), Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
Charnoz, S., Salmon, J., and Crida, A. 2010. The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature, 465, 752-754.CrossRefGoogle ScholarPubMed
Christon, S. P., Hamilton, D. C., Plane, J. M. C., et al. 2015. Discovery of suprathermal Fe+ in Saturn's magnetosphere. Journal of Geophysical Research (Space Physics), 120, 2720-2738.Google Scholar
Ciarniello, M., Capaccioni, E., Filacchione, G., et al. 2011. Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus, 214, 541-555.CrossRefGoogle Scholar
Ciarniello, M., Filacchione, G., Capaccioni, E., et al. 2016. Cassini-VIMS observations of Saturn's main rings: II. A spectrophoto-metric study by means of Monte Carlo ray-tracing and Hapke's theory. Icarus, in review.
Clark, R. N., Pearson, N., Takir, D., et al. 2012a. Nano-iron on outer solar system satellites, implications for space weathering. AGU Fall Meeting Abstracts, Dec, B5.
Clark, R. N., Cruikshank, D. P., Jaumann, R., et al. 2012b. The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831-860.CrossRefGoogle Scholar
Col well, J., Jerousek, R., Nicholson, P., et al. 2014. Abundance of small particles in Saturn's rings from Cassini UVIS and VIMS stellar occultations. Page 2479 of: EGU General Assembly Conference Abstracts, vol. 16.
Colwell, J. E. 1994. The disruption of planetary satellites and the creation of planetary rings. Planet. Sp. Sci., 42, 1139-1149.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1990a. A model of dust production in the Neptune ring system. Geophys. Res. Lett., 17, 1741—1744.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1990b. A numerical model of the Uranian dust rings. Icarus, 86, 530—560.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1992. Origins of the rings of Uranus and Neptune. I -Statistics of satellite disruptions. J. Geophys. Res., 91, 10227.
Colwell, J. E., Esposito, L. W., and Sremčević, M. 2006. Self-gravity wakes in Saturn's A ring measured by stellar occultations from Cassini. Geophys. Res. Lett, 33, 7201.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E. 2007. Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127-144.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The structure of Saturn's rings. Page 375 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.) Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
Colwell, J. E., Esposito, L. W., Jerousek, R. G., et al. 2010. Cassini UVIS Stellar occultation observations of Saturn's rings. Astron. J., 140, 1569-1578.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Jerousek, R. G., et al. 2011a. More weird size distributions in the C ring plateaus. In: Burns, J. A. (ed.), Planetary Rings Summer Workshop, Cornell, June 2011.
Colwell, J. E., Cooney, J., and Esposito, L. W. 2011b. Properties of Saturn's rings from stellar occultation statistics. AGU Fall Meeting Abstracts, Dec.
Colwell, J. E., Cooney, J. H., Esposito, L. W., and Sremčević, M. 2012. Particle sizes and small-scale structure in Saturn's rings from stellar occultation statistics. AAS/Division for Planetary Sciences Meeting Abstracts, 44, 501. 05.Google Scholar
Colwell, J. E., Cooney, J., Esposito, L. W., and Sremčević, M. 2013. Saturn's rings particle and clump sizes from Cassini UVIS occultation statistics (Invited). AGU Fall Meeting Abstracts, Dec.
Connerney, J. 2013. Solar system: Saturn's ring rain. Nature, 496, 178-179.CrossRefGoogle ScholarPubMed
Connerney, J. E. P., and Waite, J. H. 1984. New model of Saturn's ionosphere with an influx of water from the rings. Nature, 312, 136-138.CrossRefGoogle Scholar
Cooke, M. L. 1991. Saturn's rings: Photometric studies of the C Ring and radial variation in the Keeler Gap. Ph. D. thesis, Cornell University, Ithaca, NY.Google Scholar
Cooke, M. L., Nicholson, P. D., and Showalter, M. R. 1991. Pho-tometric studies of Saturn's C-ring. Bulletin of the American Astronomical Society, 23, 1180.Google Scholar
Cooper, N. J., and Murray, C. D. 2004. Dynamical influences on the orbits of Prometheus and Pandora. Astron. J., 127, 1204-1217.CrossRefGoogle Scholar
Cooper, N. J., Murray, C. D., Evans, M. W., et al. 2008. Astrometry and dynamics of Anthe (S/2007 S 4), a new satellite of Saturn. Icarus, 195, 765-777.CrossRefGoogle Scholar
Cooper, N. J., Murray, C. D., and Williams, G. A. 2013. Local variability in the orbit of Saturn's F ring. Astron. J., 145, 161.CrossRefGoogle Scholar
Cooper, N. J., Renner, S., Murray, C. D., and Evans, M. W. 2015. Saturn's inner satellites: Orbits, masses, and the chaotic motion of Atlas from new Cassini imaging observations. Astron. J., 149, 27.CrossRefGoogle Scholar
Crida, A., Papaloizou, J. C. B., Rein, H., Charnoz, S., and Salmon, J. 2010. Migration of a moonlet in a ring of solid particles: Theory and application to Saturn's propellers. Astron. J., 140, 944—953.CrossRefGoogle Scholar
Cruikshank, D. P., Dalle Ore, C. M., Clark, R. N., and Pendleton, Y. J. 2014. Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data. Icarus, 233, 306-315.CrossRefGoogle Scholar
Cuk, M., Dones, L., and Nesvorny, D. 2016. Dynamical evidence for a late formation of Saturn's moons. Astrophys. J., 820, 97.CrossRefGoogle Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. 2009. Ring particle composition and size distribution. Page 459 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.) Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
Cuzzi, J. N. 1985. Rings of Uranus —Not so thick, not so black. Icarus, 63, 312-316.CrossRefGoogle Scholar
Cuzzi, J. N., and Estrada, P. R. 1998. Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus, 132, 1—35.CrossRefGoogle Scholar
Cuzzi, J. N., and Pollack, J. B. 1978. Saturn's rings: Particle composition and size distribution as constrained by microwave observations. I -Radar observations. Icarus, 33, 233-262.CrossRefGoogle Scholar
Cuzzi, J. N., Pollack, J. B., and Summers, A. L. 1980. Saturn's rings — Particle composition and size distribution as constrained by observations at microwave wavelengths. II —Radio interferomet-ric observations. Icarus, 44, 683—705.CrossRefGoogle Scholar
Cuzzi, J. N., Lissauer, J. J., and Shu, F. H. 1981. Density waves in Saturn's rings. Nature, 292, 703-707.CrossRefGoogle Scholar
Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., et al. 1984. Saturn's rings — Properties and processes. Pages 73—199 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Cuzzi, J. N., French, R. G., and Dones, L. 2002. HST multicolor (255-1042 nm) photometry of Saturn's main rings. I: radial profiles, phase and opening angle variations, and regional spectra. Icarus, 158, 199-223.CrossRefGoogle Scholar
Cuzzi, J. N., Burns, J. A., Charnoz, S., et al. 2010. An evolving view of Saturn's dynamic rings. Science, 327, 1470.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Whizin, A. D., Hogan, R. C., et al. 2014a. Saturn's F Ring core: Calm in the midst of chaos. Icarus, 232, 157—175.CrossRefGoogle Scholar
Cuzzi, J. N., Marouf, E. A., French, R. C., and Jacobson, R. 2014b. Saturn's F ring core: Calm in the midst of chaos; Part 2. In: Esposito, The Rings of Saturn L. W. (ed.), Planetary Rings Summer Workshop, Boulder, Colo, August 2014. Also DPS meeting #46, 402. 01.Google Scholar
Cuzzi, J. N., Chambers, L., and Hendrix, A. R. 2017. Rough surfaces: Is the dark stuff just shadow? Icarus, 289, 281-294.CrossRefGoogle Scholar
Cuzzi, J. N., French, R. C., and Hendrix, A. R. 2018. HST-STIS observations of Saturn's rings, and the composition of the UV absorber. Icarus, in review.
D'Aversa, E., Bellucci, G., Nicholson, P. D., et al. 2010. The spectrum of a Saturn ring spoke from Cassini/VIMS. GRL, 37, 1203.CrossRefGoogle Scholar
Davis, D. R., Weidenschilling, S. J., Chapman, C. R., and Greenberg, R. 1984. Saturn ring particles as dynamic ephemeral bodies. Science, 224, 744-747.CrossRefGoogle ScholarPubMed
Deau, E. 2012. Variations of the apparent angular size of the Sun across the entire Solar System: Implications for planetary opposition surges. J. Sped Quant. Rad. Transf., 113, 1476-1487.Google Scholar
Deau, E. 2015. The opposition effect in Saturn's main rings as seen by Cassini ISS: 2. Constraints on the ring particles and their regolith with analytical radiative transfer models. Icarus, 253, 311—345.CrossRefGoogle Scholar
Deau, E., Flandes, A., Spilker, L. J., and Petazzoni, J. 2013. Re-analysis of previous laboratory phase curves: 1. Variations of the opposition effect morphology with the textural properties, and an application to planetary surfaces. Icarus, 226, 1465—1488.CrossRefGoogle Scholar
Dones, H. C., Agnor, C. B., and Asphaug, E. 2008. Formation of Saturn's Rings by Tidal Disruption of a Centaur. Page 18. 07 of: AAS/Division of Dynamical Astronomy Meeting #39. AAS/Division of Dynamical Astronomy Meeting, vol. 39.Google Scholar
Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus, 92, 194-203.CrossRefGoogle Scholar
Dones, L., Chapman, C. R., McKinnon, W. B., et al. 2009. Icy satellites of Saturn: Impact cratering and age determination. Page 613 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.) Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
Doyle, L. R., and Griin, E. 1990. Radiative transfer modeling con-straints on the size of the spoke particles in Saturn's rings. Icarus, 85, 168-190.CrossRefGoogle Scholar
Doyle, L. R., Dones, L., and Cuzzi, J. N. 1989. Radiative transfer modeling of Saturn's outer Bring. Icarus, 80, 104—135.CrossRefGoogle Scholar
Durisen, R. H., Bode, P. W., Cuzzi, J. N., Cederbloom, S. E., and Murphy, B. W. 1992. Ballistic transport in planetary ring systems due to particle erosion mechanisms. II —Theoretical models for Saturn's A-and B-ring inner edges. Icarus, 100, 364—393.CrossRefGoogle Scholar
Durisen, R. H., Bode, P. W., Dyck, S. G., et al. 1996. Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by meteoroid impacts. Icarus, 124, 220-236.CrossRefGoogle Scholar
El Moutamid, M., Nicholson, P. D., French, R. G., et al. 2016. How Janus' orbital swap affects the edge of Saturn's A ring? Icarus, 279, 125-140.CrossRefGoogle Scholar
Elliott, J. P., and Esposito, L. W. 2011. Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268—274.CrossRefGoogle Scholar
Elliott, J. P., and Esposito, L. W. 2015. Evolution of regolith depth and fractional pollution of Saturn's rings. Page #218. 13 of: AAS/Division for Planetary Sciences Meeting Abstracts, 47, 218. 13.Google Scholar
Elrod, M. K., Tseng, W. -L., Woodson, A. K., and Johnson, R. E. 2014. Seasonal and radial trends in Saturn's thermal plasma between the main rings and Enceladus. Icarus, 242, 130-137.CrossRefGoogle Scholar
Epstein, E. E., Janssen, M. A., Cuzzi, J. N., Fogarty, W. G., and Mottmann, J. 1980. Saturn's rings —3-mm observations and derived properties. Icarus, 41, 103—118.CrossRefGoogle Scholar
Esposito, L. W. 1986. Structure and evolution of Saturn's rings. Icarus, 67, 345-357.CrossRefGoogle Scholar
Esposito, L. W. 2010. Composition, structure, dynamics, and evolution of Saturn's rings. Annual Review of Earth and Planetary Sciences, 38, 383-410.CrossRefGoogle Scholar
Esposito, L. W. 2014. Planetary Rings: A Post-Equinox View. Cambridge, UK, Cambridge Planetary Science.CrossRefGoogle Scholar
Esposito, L. W., Cuzzi, J. N., Holberg, J. B., et al. 1984. Saturn's rings —structure, dynamics, and particle properties. Pages 463—545 of: Gehrels, T., and Matthews, M. S. (eds.) Saturn. Tucson: University of Arizona Press.Google Scholar
Esposito, L. W., Albers, N., Meinke, B. K., et al. 2012. A predator-prey model for moon-triggered clumping in Saturn's rings. Icarus, 217, 103-114.CrossRefGoogle Scholar
Estrada, P. R., and Mosqueira, I. 2006. A gas-poor planetesimal capture model for the formation of giant planet satellite systems. Icarus, 181, 486-509.CrossRefGoogle Scholar
Estrada, P. R., Cuzzi, J. N., and Showalter, M. R. 2003. Voyager color photometry of Saturn's main rings: a correction. Icarus, 166, 212-222.CrossRefGoogle Scholar
Estrada, P. R., Durisen, R. H., Cuzzi, J. N., and Morgan, D. A. 2015a. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport. Icarus, 252, 415-439.CrossRefGoogle Scholar
Estrada, P. R., Durisen, R. H., Cuzzi, J. N., and Morgan, D. A. 2015b. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport. Icarus, 252, 415-439.CrossRefGoogle Scholar
Farmer, A. J., and Goldreich, P. 2006. Understanding the behavior of Prometheus and Pandora. Icarus, 180, 403-411.CrossRefGoogle Scholar
Ferrari, C., and Reffet, E. 2013. The dark side of Saturn's Bring: Seasons as clues to its structure. Icarus, 223, 28-39.CrossRefGoogle Scholar
Filacchione, G., Capaccioni, E., Ciarniello, M., et al. 2012. Saturn's icy satellites and rings investigated by Cassini-VIMS: III —Radial compositional variability. Icarus, 220, 1064—1096.CrossRefGoogle Scholar
Filacchione, G., Capaccioni, E., Clark, R. N., et al. 2013. The radial distribution of water ice and chromophores across Saturn's system. Astrophys. J., 766, 76.CrossRefGoogle Scholar
Filacchione, G., Ciarniello, M., Capaccioni, F., et al. 2014. Cassini-VIMS observations of Saturn's main rings: I. Spectral properties and temperature radial profiles variability with phase angle and elevation. Icarus, 241, 45-65.CrossRefGoogle Scholar
Flandes, A., Spilker, L., Morishima, R., et al. 2010. Brightness of Saturn's rings with decreasing solar elevation. Planet. Sp. Sci., 58, 1758-1765.CrossRefGoogle Scholar
French, R. G., and Nicholson, P. D. 2000. Saturn's rings II. Particle sizes inferred from stellar occultation data. Icarus, 145, 502-523.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. 1991. Dynamics and structure of the Uranian rings. Pages 327—409 of Bergstrahl, J. T., Miner, E. D., and Matthews, M. S. (eds.) Uranus. Tucson: University of Arizona Press.Google Scholar
French, R. G., McGhee, C. A., Dones, L., and Lissauer, J. J. 2003. Saturn's wayward shepherds: the peregrinations of Prometheus and Pandora. Icarus, 162, 143-170.CrossRefGoogle Scholar
French, R. G., Salo, H., McGhee, C. A., and Dones, L. 2007a. HST observations of azimuthal asymmetry in Saturn's rings. Icarus, 189, 493-522.CrossRefGoogle Scholar
French, R. G., Verbiscer, A., Salo, H., McGhee, C., and Dones, L. 2007b. Saturn's rings at true opposition. Pub. Ast. Soc. Pacific, 119, 623-642.Google Scholar
French, R. G., Marouf, E. A., Rappaport, N. J., and McGhee, C. A. 2010. Occultation observations of Saturn's Bring and Cassini Division. Astron. J., 139, 1649-1667.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Hedman, M. M., et al. 2016. Deciphering the embedded wave in Saturn's Maxwell ringlet. Icarus, 279, 62-77.CrossRefGoogle Scholar
French, R. S., Showalter, M. R., Sfair, R., et al. 2012. The brightening of Saturn's F ring. Icarus, 219, 181-193.CrossRefGoogle Scholar
French, R. S., Hicks, S. K., Showalter, M. R., Antonsen, A. K., and Packard, D. R. 2014. Analysis of clumps in Saturn's F ring from Voyager and Cassini. Icarus, 241, 200-220.CrossRefGoogle Scholar
Fuller, J. 2014. Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn. Icarus, 242, 283—296.CrossRefGoogle Scholar
Fuller, J. 2015. Saturn ring seismology: How ring dynamics reveal the internal structure of the planet. AAS/Division of Dynamical Astronomy Meeting, 46, 200. 03.Google Scholar
Gehrels, T., Baker, L. R., Beshore, E., et al. 1980. Imaging photopo-larimeter on Pioneer Saturn. Science, 207, 434—439.CrossRefGoogle ScholarPubMed
Goldreich, P., and Rappaport, N. 2003. Origin of chaos in the Prometheus—Pandora system. Icarus, 166, 320—327.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20, 249-283.CrossRefGoogle Scholar
Goldstein, R. M., and Morris, G. A. 1973. Radar observations of the rings of Saturn. Icarus, 20, 260—262.CrossRefGoogle Scholar
Goldstein, R. M., Green, R. R., Pettengill, G. H., and Campbell, D. B. 1977. The rings of Saturn -Two-frequency radar observations. Icarus, 30, 104-110.CrossRefGoogle Scholar
Griv, E. 2011. Formation of moonlets in Saturn's rings: The role of the constructive interference of Lin-Shu-type circular and spiral density waves. Astrophys. J., 733, 43.CrossRefGoogle Scholar
Griin, E., Zook, H. A., Fechtig, H., and Giese, R. H. 1985. Collisional balance of the meteoritic complex. Icarus, 62, 244-272.Google Scholar
Griin, E., Goertz, C. K., Morfill, G. E., and Havnes, O. 1992. Statistics of Saturn's spokes. Icarus, 99, 191—201.Google Scholar
Gurnett, D., Kurth, W., Hospodarsky, G., Persoon, A., and Cuzzi, J. 2004. Evidence of meteoroid impacts on the rings from Cassini plasma wave measurements. AGU Fall Meeting Abstracts, Dec.
Hahn, J. M. 2006. Small shepherd satellites in Saturn's Encke Gap? Lunar and Planetary Science Conference, 37, 1025.Google Scholar
Hahn, J. M., and Spitale, J. N. 2013. An N-body integrator for gravitating planetary rings, and the outer edge of Saturn's Bring. Astrophys. J., 772, 122.CrossRefGoogle Scholar
Han, D., Poppe, A. R., Piquette, M., Griin, E., and Horanyi, M. 2011. Constraints on dust production in the Edgeworth—Kuiper Belt from Pioneer 10 and New Horizons measurements. Geophys. Res. Lett, 38, L24102.CrossRefGoogle Scholar
Hapke, B. 1993. Theory of Reflectance and Emittance Spectroscopy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Harbison, R. A., Nicholson, P. D., and Hedman, M. M. 2013. The smallest particles in Saturn's A and C rings. Icarus, 226, 1225-1240.CrossRefGoogle Scholar
Harris, A. W. 1984. The origin and evolution of planetary rings. Pages 641-659 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Hedman, M. M. 2015. Why are dense planetary rings only found between 8 AU and 20 AU? Astrophys. J. Lett, 801, L33.Google Scholar
Hedman, M. M., and Nicholson, P. D. 2013. Kronoseismology: Using density waves in Saturn's C ring to probe the planet's interior. Astron. J., 146, 12.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2014. More Kronoseismology with Saturn's rings. M. N. R. A. S., 444, 1369-1388.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2015. How massive is Saturn's Bring? Clues from cryptic density waves. AAS/Division of Dynamical Astronomy Meeting, 46, 200. 05.Google Scholar
Hedman, M. M., and Showalter, M. R. 2016. A new pattern in Saturn's D ring created in late 2011. Icarus, 279, 155-165.CrossRefGoogle Scholar
Hedman, M. M., and Stark, C. C. 2015. Saturn's G and D rings provide nearly complete measured scattering phase functions of nearby debris disks. Astrophys. J., 811, 67.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Showalter, M. R., et al. 2007a. Saturn's dynamic D ring. Icarus, 188, 89-107.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Salo, H., et al. 2007b. Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astron. J., 133, 2624-2629.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Tiscareno, M. S., etal. 2007c. The source of Saturn's G ring. Science, 317, 653.CrossRefGoogle ScholarPubMed
Hedman, M. M., Murray, C. D., Cooper, N. J., et al. 2009. Three tenuous rings/arcs for three tiny moons. Icarus, 199, 378—386.CrossRefGoogle Scholar
Hedman, M. M., Cooper, N. J., Murray, C. D., et al. 2010a. Aegaeon (Saturn LIII), a G-ring object. Icarus, 207, 433-447.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Baines, K. H., et al. 2010b. The architecture of the Cassini Division. Astron. J., 139, 228—251.CrossRefGoogle Scholar
Hedman, M. M., Burt, J. A., Burns, J. A., and Tiscareno, M. S. 2010c. The shape and dynamics of a heliotropic dusty ringlet in the Cassini Division. Icarus, 210, 284-297.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Evans, M. W., Tiscareno, M. S., and Porco, C. C. 2011a. Saturn's curiously corrugated C ring. Science, 332, 708.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Showalter, M. R., et al. 2011b. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring. Icarus, 215, 695—711.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Hamilton, D. P., and Showalter, M. R. 2012. The three-dimensional structure of Saturn's E ring. Icarus, 217, 322-338.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Cuzzi, J. N., et al. 2013a. Connections between spectra and structure in Saturn's main rings based on Cassini VIMS data. Icarus, 223, 105-130.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Hamilton, D. P., and Showalter, M. R. 2013b. Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap. Icarus, 223, 252-276.CrossRefGoogle Scholar
Hedman, M. M., Burt, J. A., Burns, J. A., and Showalter, M. R. 2014. Non-circular features in Saturn's D ring: D68. Icarus, 233, 147—162.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., and Showalter, M. R. 2015. Corrugations and eccentric spirals in Saturn's D ring: New insights into what happened at Saturn in 1983. Icarus, 248, 137-161.CrossRefGoogle Scholar
Hirata, N., and Miyamoto, H. 2012. Dust levitation as a major resurfacing process on the surface of a saturnian icy satellite, Atlas. Icarus, 220, 106-113.CrossRefGoogle Scholar
Hoffmann, H., SeiB, M., and Spahn, F. 2013. Vertical relaxation of a moonlet propeller in Saturn's A ring. Astrophys. J. Lett, 765, L4.Google Scholar
Hoffmann, H., SeiB, M., Salo, H., and Spahn, F. 2015. Vertical structures induced by embedded moonlets in Saturn's rings. Icarus, 252, 400-414.CrossRefGoogle Scholar
Horanyi, M., Burns, J. A., Hedman, M. M., Jones, G. H., and Kempf, S. 2009. Diffuse rings. Page 511 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.) Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
Horn, L. J., and Cuzzi, J. N. 1996. Characteristic Wavelengths of Irregular Structure in Saturn's Bring. Icarus, 119, 285—310.CrossRefGoogle Scholar
Hsu, H. -W, Postberg, E., Kempf, S., et al. 2011. Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. Journal of Geophysical Research (Space Physics), 116, A09215.Google Scholar
Hsu, S., Tseng, W. L., Juhasz, A., Kempf, S., and Horanyi, M. 2014. Photolysis and radiolysis of ice in Saturn's E ring. AGU Fall Meeting Abstracts, Dec, B3993.
Hueso, R., Perez-Hoyos, S., Sanchez-Lavega, A., et al. 2013. Impact flux on Jupiter: From superbolides to large-scale collisions. Astron. Astrophys., 560, A55.CrossRefGoogle Scholar
Hyodo, R., and Ohtsuki, K. 2014. Collisional disruption of gravitational aggregates in the tidal environment. Astrophys. J., 787, 56.CrossRefGoogle Scholar
Hyodo, R., Charnoz, S., Ohtsuki, K., and Genda, H. 2015. Physics of tidal disruption of big objects at the close encounter to Sat-urn. AAS/Division for Planetary Sciences Meeting Abstracts, 47, 218. 10.Google Scholar
Imanaka, H., Khare, B. N., Elsila, J. E., et al. 2004. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing poly cyclic aromatic compounds in Titan haze. Icarus, 168, 344—366.CrossRefGoogle Scholar
Imanaka, H., Cruikshank, D. P., Khare, B. N., and McKay, C. P. 2012. Optical constants of Titan tholins at mid-infrared wavelengths (2. 5-25 u. m) and the possible chemical nature of Titan's haze particles. Icarus, 218, 247-261.CrossRefGoogle Scholar
Jacobson, R. A., Spitale, J., Porco, C. C., et al. 2008. Revised orbits of Saturn's small inner satellites. Astron. J., 135, 261—263.CrossRefGoogle Scholar
Jerousek, R. G., Colwell, J. E., Nicholson, P. D., et al. 2014. Particle size distribution in Saturn's C ring and Cassini Division from VIMS and UVIS stellar occultations. AGU Fall Meeting Abstracts, Dec.
Johnson, R. E., Luhmann, J. G., Tokar, R. L., et al. 2006. Production, ionization and redistribution of O2 in Saturn's ring atmosphere. Icarus, 180, 393-402.CrossRefGoogle Scholar
Johnson, T. V., and Estrada, P. R. 2009. Origin of the Saturn system. Page 55 of: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygers. Springer Science + Business Media B. V.Google Scholar
Juhasz, A., Horanyi, M., and Morfill, G. E. 2007. Signatures of Enceladus in Saturn's E ring. Geophys. Res. Lett., 34, 9104.CrossRefGoogle Scholar
Karkoschka, E. 1994. Spectrophotometry of the jovian planets and Titan at 300-to 1000-nm wavelength: The methane spectrum. Icarus, 111, 174-192.CrossRefGoogle Scholar
Kempf, S., Altobelli, N., Horanyi, M., and Srama, R. 2013. The mass flux of micrometeoroids into the Saturnian system. AGU Fall Meeting Abstracts, Dec.
Kempf, S., Altobelli, N., Horanyi, M., and Srama, R. 2014. The mass flux of micrometeoroids into the Saturn. EGU General Assembly Conference Abstracts, 16, 15324.Google Scholar
Lainey, V., Jacobson, R. A., Tajeddine, R., et al. 2017. New constraints on Saturn's interior from Cassini astrometric data. Icarus, 281, 286-296.CrossRefGoogle Scholar
Landgraf, M., Baggaley, W. J., Griin, E., Kriiger, H., and Linkert, G. 2000. Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res., 105, 10343-10352.CrossRefGoogle Scholar
Latter, H. N., Rein, H., and Ogilvie, G. I. 2012. The gravitational instability of a stream of co-orbital particles. MNRAS, 423, 1267-1276.CrossRefGoogle Scholar
Lawney, B. P., Jenkins, J. T., and Burns, J. A. 2012. Collisional features in a model of a planetary ring. Icarus, 220, 383—391.CrossRefGoogle Scholar
Leinhardt, Z. M., Ogilvie, G. I., Latter, H. N., and Kokubo, E. 2012. Tidal disruption of satellites and formation of narrow rings. MNRAS, 424, 1419-1431.CrossRefGoogle Scholar
Liu, C. -M., and Ip, W. -H. 2014. A new pathway of Saturnian ring-ionosphere coupling via charged nanograins. Astrophys. J., 786, 34.CrossRefGoogle Scholar
Longaretti, P. -Y. 1989. Saturn's main ring particle size distribution -an analytic approach. Icarus, 81, 51—73.CrossRefGoogle Scholar
Luhmann, J. G., Johnson, R. E., Tokar, R. L., Ledvina, S. A., and Cravens, T. E. 2006. A model of the ionosphere of Saturn's rings and its implications. Icarus, 181, 465-474.CrossRefGoogle Scholar
Madhusudhanan, P., Esposito, L., and Torres, P. 2016. A combined dynamical and transport model for producing haloes at resonances in Saturn's rings. Icarus, submitted.
Marley, M. S. 2014. Saturn ring seismology: Looking beyond first order resonances. Icarus, 234, 194-199.CrossRefGoogle Scholar
Marley, M. S., and Porco, C. C. 1993. Planetary acoustic mode seismology -Saturn's rings. Icarus, 106, 508.CrossRefGoogle Scholar
Marouf, E. A., Tyler, G. L., and Eshleman, V. R. 1982. Theory of radio occultation by Saturn's rings. Icarus, 49, 161—193.CrossRefGoogle Scholar
Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A., and Eshleman, V. R. 1983. Particle size distributions in Saturn's rings from Voyager 1 radio occultation. Icarus, 54, 189—211.CrossRefGoogle Scholar
Marouf, E. A., French, R., Rappaport, N., et al. 2008. Physical properties of Saturn's rings from Cassini radio occultations. AAS/Division for Planetary Sciences Meeting Abstracts #40, 40, 429.Google Scholar
Marouf, E. A., Wong, K., French, R., Rappaport, N., and McGhee, C. 2010. The discontinuous core of Saturn's F-ring and orbit model. AAS/Division for Planetary Sciences Meeting Abstracts #42, 42, 988.Google Scholar
Marouf, E. A., French, R. G., Rappaport, N. J., et al. 2011a. Six centuries old spiral of vertical corrugations in Saturn's C-ring. AGU Fall Meeting Abstracts, Dec.
Marouf, E. A., French, R. G., Rappaport, N. J., et al. 2011b. Weird size distribution in the C Ring plateaus. In: Burns, J. A. (ed.), Planetary Rings Summer Workshop, Cornell, June 2011.
Marouf, E. A., Wong, K. K., French, R. G., and Rappaport, N. J. 2013. Particle Sizes in Saturn's Rings from Cassini Radio Occultations. AGU Fall Meeting Abstracts, Dec.
Marouf, E. A., Wong, K. K., French, R. G., Rappaport, N. J., and McGhee-French, C. A. 2014. Scattering by gravitational wakes in Saturn's A-ring and inference of wake sizes from multiple Cassini radio occultations. AAS/Division for Planetary Sciences Meeting Abstracts, 46, 402. 03.Google Scholar
Mastrapa, R., Sandford, S. A., Roush, T. L., Cruikshank, D. P., and Dalle Ore, C. M. 2009. Optical constants of amorphous, crystalline H2O ice: 2. 5-22 urn. Astrophys. J., 701, 1347-1356.CrossRefGoogle Scholar
McGhee, C. A., Nicholson, P. D., French, R. G., and Hall, K. J. 2001. HST Observations of Saturnian satellites during the 1995 ring plane crossings. Icarus, 152, 282-315.CrossRefGoogle Scholar
McGhee, C. A., French, R. G., Dones, L., et al. 2005. HST observations of spokes in Saturn's Bring. Icarus, 173, 508—521.CrossRefGoogle Scholar
Meinke, B. K., Esposito, L. W., Albers, N., and Sremčević, M. 2012. Classification of F ring features observed in Cassini UVIS occultations. Icarus, 218, 545-554.CrossRefGoogle Scholar
Mendis, D. A., HiU, J. R., Ip, W. -H., Goertz, C. K., and Gruen, E. 1984. Electrodynamic processes in the ring system of Saturn. Pages 546-589 of Gehrels, T., and Matthews, M. S. (eds.), Saturn. Tucson: University of Arizona Press.Google Scholar
Michikoshi, S., and Kokubo, E. 2011. Formation of a propeller structure by a moonlet in a dense planetary ring. Astrophys. J. Lett., 732, L23.CrossRefGoogle Scholar
Mitchell, C. J., Horanyi, M., Havnes, O., and Porco, C. C. 2006. Saturn's spokes: Lost and found. Science, 311, 1587-1589.CrossRefGoogle ScholarPubMed
Mitchell, C. J., Porco, C. C., Dones, H. L., and Spitale, J. N. 2013. The behavior of spokes in Saturn's Bring. Icarus, 225, 446—474.CrossRefGoogle Scholar
Moore, L., O'Donoghue, J., Mueller-Wodarg, I., and Mendillo, M. 2013 (Oct.). Saturn's ring rain: Initial estimates of ring mass loss rates. AAS/Division for Planetary Sciences Meeting Abstracts, 45, 512. 06.Google Scholar
Moore, L., O'Donoghue, J., Miiller-Wodarg, I., Galand, M., and Mendillo, M. 2015. Saturn ring rain: Model estimates of water influx into Saturn's atmosphere. Icarus, 245, 355-366.CrossRefGoogle Scholar
Morishima, R., Edgington, S. G., and Spilker, L. 2012. Regolith grain sizes of Saturn's rings inferred from Cassini-CIRS far-infrared spectra. Icarus, 221, 888-899.CrossRefGoogle Scholar
Morishima, R., Spilker, L., Brooks, S., Deau, E., and Pilorz, S. 2016. Incomplete cooling down of Saturn's A ring at solar equinox: Implication for seasonal thermal inertia and internal structure of ring particles. Icarus, 279, 2—19.CrossRefGoogle Scholar
Mosqueira, I., and Estrada, P. R. 2003a. Formation of the regular satellites of giant planets in an extended gaseous nebula I: sub nebula model and accretion of satellites. Icarus, 163, 198—231.Google Scholar
Mosqueira, I., and Estrada, P. R. 2003b. Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival. Icarus, 163, 232-255.Google Scholar
Mosqueira, I., Estrada, P. R., and Charnoz, S. 2010a. Deciphering the origin of the regular satellites of gaseous giants —Iapetus: The Rosetta ice-moon. Icarus, 207, 448-460.CrossRefGoogle Scholar
Mosqueira, I., Estrada, P., and Turrini, D. 2010b. Planetesimals and satellitesimals: formation of the satellite systems. Sp. Sci. Revs., 153, 431-446.Google Scholar
Murray, C. D., and Dermott, S. F. 1999. Solar System Dynamics. Cambridge, UK, Cambridge University Press.Google Scholar
Murray, C. D., Beurle, K., Cooper, N. J., et al. 2008. The determination of the structure of Saturn's F ring by nearby moonlets. Nature, 453, 739-744.CrossRefGoogle ScholarPubMed
Murray, C. D., Cooper, N. J., Williams, G. A., Attree, N. O., and Boyer, J. S. 2014. The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring. Icarus, 236, 165-168.CrossRefGoogle Scholar
Nicholson, P. D., and Hedman, M. M. 2010. Self-gravity wake parameters in Saturn's A and Brings. Icarus, 206, 410—423.CrossRefGoogle Scholar
Nicholson, P. D., Hedman, M. M., Clark, R. N., et al. 2008. A close look at Saturn's rings with Cassini VIMS. Icarus, 193, 182-212.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., Hedman, M. M., et al. 2014a. Architecture of the Cassini Division revisited. AAS/Division of Dynamical Astronomy Meeting, 45, 402. 01.Google Scholar
Nicholson, P. D., French, R. G., Hedman, M. M., Marouf, E. A., and Colwell, J. E. 2014b. Noncircular features in Saturn's rings I: The edge of the Bring. Icarus, 227, 152-175.CrossRefGoogle Scholar
Nitter, T., Havnes, O., and Melands0, F. 1998. Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space. J. Geophys. Res., 103, 6605-6620.CrossRefGoogle Scholar
Northrop, T. G., and Hill, J. R. 1982. Stability of negatively charged dust grains in Saturn's ring plane. J. Geophys. Res., 87, 6045-6051.CrossRefGoogle Scholar
Northrop, T. G., and Hill, J. R. 1983a. The adiabatic motion of charged dust grains in rotating magnetospheres. J. Geophys. Res., 88, 1—11.
Northrop, T. G., and Hill, J. R. 1983b. The inner edge of Saturn's Bring. J. Geophys. Res., 88, 6102-6108.CrossRefGoogle Scholar
O'Donoghue, J., Stallard, T. S., Melin, H., et al. 2013. The domination of Saturn's low-latitude ionosphere by ring ‘rain’. Nature, 496, 193-195.Google Scholar
Ohtsuki, K. 2006. Rotation rate and velocity dispersion of planetary ring particles with size distribution II. Numerical simulation for gravitating particles. Icarus, 183, 384—395.Google Scholar
Ohtsuki, K., Yasui, Y., and Daisaka, H. 2013. Accretion rates of moonlets embedded in circumplanetary particle disks. Astron. J., 146, 25.CrossRefGoogle Scholar
Orton, G. S., Baines, K. H., Cruikshank, D., et al. 2009. Review of knowledge prior to the Cassini-Huygens mission and concurrent research. Page 9 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.) Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
Pan, M., and Chiang, E. 2010. The propeller and the frog. Astrophys. J. Lett., 722, L178-L182.CrossRefGoogle Scholar
Pan, M., and Chiang, E. 2012. Care and feeding of Frogs. Astron. J., 143, 9.CrossRefGoogle Scholar
Pan, M., Rein, H., Chiang, E., and Evans, S. N. 2012. Stochastic flights of propellers. MNRAS, 427, 2788-2796.CrossRefGoogle Scholar
Pilorz, S., Altobelli, N., Colwell, J., and Showalter, M. 2015. Thermal transport in Saturn's Bring inferred from Cassini CIRS. Icarus, 254, 157-177.CrossRefGoogle Scholar
Pollack, J. B. 1975. The rings of Saturn. Sp. Sci. Revs, 18, 3-93.Google Scholar
Pollack, J. B., Summers, A., and Baldwin, B. 1973. Estimates of the sizes of the particles in the rings of Saturn and their cosmogonic implications. Icarus, 20, 263—278.CrossRefGoogle Scholar
Poppe, A. R. 2016. An improved model for interplanetary dust fluxes in the outer Solar System. Icarus, 264, 369-386.CrossRefGoogle Scholar
Poppe, A. R., and Horanyi, M. 2012. On the Edgeworth-Kuiper Belt dust flux to Saturn. Geophys. Res. Lett, 39, L15104.
Porco, C., Danielson, G. E., Goldreich, P., Holberg, J. B., and Lane, A. L. 1984. Saturn's nonaxisymmetric ring edges at 1. 95 Rs and 2. 27 Rs. Icarus, 60, 17-28.CrossRefGoogle Scholar
Porco, C. C. 2006. Rings of Saturn (R/2006 S 1, R/2006 S 2, R/2006 S 3, R/2006 S 4). IAUCirc, 8759, 1.Google Scholar
Porco, C. C., Nicholson, P. D., Cuzzi, J. N., Lissauer, J. J., and Esposito, L. W. 1995. Neptune's ring system. Pages 703-804 of: Cruikshank, D. P., Matthews, M. S., and Schumann, A. M. (eds.), Neptune and Triton. Tucson: University of Arizona Press.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science, 307, 1226-1236.Google ScholarPubMed
Porco, C. C., Helfenstein, P., Thomas, P. C., et al. 2006. Cassini observes the active south pole of Enceladus. Science, 311, 1393-1401.CrossRefGoogle ScholarPubMed
Porco, C. C., Thomas, P. C., Weiss, J. W., and Richardson, D. C. 2007. Saturn's small inner satellites: Clues to their origins. Science, 318(5856), 1602.CrossRefGoogle ScholarPubMed
Porco, C. C., Weiss, J. W., Richardson, D. C., et al. 2008. Simulations of the dynamical and light-scattering behavior of Saturn's rings and the derivation of ring particle and disk properties. Astron. J., 136, 2172-2200.CrossRefGoogle Scholar
Postberg, E., Kempf, S., Hillier, J. K., et al. 2008. The E-ring in the vicinity of Enceladus. II. Probing the moon's interior —The composition of E-ring particles. Icarus, 193, 438–54.Google Scholar
Postberg, E., Khawaja, N., Reviol, R., et al. 2017. EGU2017, Vienna, Austria, p. 13686.
Poulet, E., and Sicardy, B. 2001. Dynamical evolution of the Prometheus-Pandora system. MNRAS, 322, 343-355.CrossRefGoogle Scholar
Poulet, E., Cuzzi, J. N., French, R. G., and Dones, L. 2002. A study of Saturn's ring phase curves from HST observations. Icarus, 158, 224-248.CrossRefGoogle Scholar
Poulet, E., Cruikshank, D. P., Cuzzi, J. N., Roush, T. L., and French, R. G. 2003. Compositions of Saturn's rings A, B., and C from high resolution near-infrared spectroscopic observations. Astronomy and Astrophysics, 412, 305-316.CrossRefGoogle Scholar
Reffet, E., Verdier, M., and Ferrari, C. 2015. Thickness of Saturn's Bring as derived from seasonal temperature variations measured by Cassini CIRS. Icarus, 254, 276-286.CrossRefGoogle Scholar
Rein, H., and Papaloizou, J. C. B. 2010. Stochastic orbital migration of small bodies in Saturn's rings. Astron. Astrophys., 524, A22.CrossRefGoogle Scholar
Renner, S., Sicardy, B., and French, R. G. 2005. Prometheus and Pandora: masses and orbital positions during the Cassini tour. Icarus, 174, 230-240.CrossRefGoogle Scholar
Robbins, S. J., Stewart, G. R., Lewis, M. C., Colwell, J. E., and Sremčević, M. 2010. Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 431-445.CrossRefGoogle Scholar
Rosen, P. A., and Lissauer, J. J. 1988. The Titan-l:0 nodal bending wave in Saturn's ring C. Science, 241, 690-694.CrossRefGoogle Scholar
Rosen, P. A., Tyler, G. L., Marouf, E. A., and Lissauer, J. J. 1991. Resonance structures in Saturn's rings probed by radio occultation. II —Results and interpretation. Icarus, 93, 25-44.CrossRefGoogle Scholar
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. 2010. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 771-785.CrossRefGoogle Scholar
Salo, H. 1995. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 117, 287-312.CrossRefGoogle Scholar
Salo, H. 2012. Simulating the formation of fine-scale structure in Saturn's rings. Progress of Theoretical Physics Supplement, 195, 48-67.CrossRefGoogle Scholar
Salo, H., and French, R. G. 2010. The opposition and tilt effects of Saturn's rings from HST observations. Icarus, 210, 785—816.CrossRefGoogle Scholar
Scharringhausen, B. R., and Nicholson, P. D. 2013. The vertical structure of the F ring of Saturn from ring-plane crossings. Icarus, 226, 1275-1293.CrossRefGoogle Scholar
Schmidt, J., and Tiscareno, M. S. 2013. Ejecta clouds from meteoroid impacts on Saturn's rings: Constraints on the orbital elements and size of the projectiles. AGU Fall Meeting Abstracts, Dec.
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., and Spahn, F. 2009. Dynamics of Saturn's dense rings. Page 413 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.) Saturn From Cassini-Huygens. Springer Science+Business Media B. V.Google Scholar
SeiB, M., Spahn, E., Sremčević, M., and Salo, H. 2005. Structures induced by small moonlets in Saturn's rings: Implications for the Cassini Mission. Geophys. Res. Lett., 32, L11205.Google Scholar
Shi, J., Raut, U., Kim, J. -H., Loeffler, M., and Baragiola, R. A. 2011. Ultraviolet photon-induced synthesis and trapping of H2O2 and O3 in porous water ice films in the presence of ambient O2: Implications for extraterrestrial ice. Astrophys. J. Lett., 738, L3.CrossRefGoogle Scholar
Showalter, M. R. 1991. Visual detection of 1981S13, Saturn's eighteenth satellite, and its role in the Encke gap. Nature, 351, 709-713.CrossRefGoogle Scholar
Showalter, M. R., and Burns, J. A. 1982. A numerical study of Saturn's F-ring. Icarus, 52, 526-544.CrossRefGoogle Scholar
Showalter, M. R., and Nicholson, P. D. 1990. Saturn's rings through a microscope -Particle size constraints from the Voyager PPS scan. Icarus, 87, 285-306.CrossRefGoogle Scholar
Showalter, M. R., Pollack, J. B., Ockert, M. E., Doyle, L. R., and Dal-ton, J. B. 1992. A photometric study of Saturn's F ring. Icarus, 100, 394-11.CrossRefGoogle Scholar
Showalter, M. R., de Pater, I., Verbanac, G., Hamilton, D. P., and Burns, J. A. 2008. Properties and dynamics of Jupiter's gossamer rings from Galileo, Voyager, Hubble and Keck images. Icarus, 195, 361-377.CrossRefGoogle Scholar
Showalter, M. R., Hedman, M. M., and Burns, J. A. 2011. The impact of Comet Shoemaker-Levy 9 sends ripples through the rings of Jupiter. Science, 332, 711.CrossRefGoogle ScholarPubMed
Shu, F. H. 1984. Waves in planetary rings. Pages 513-561 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Shu, F. H., Cuzzi, J. N., and Lissauer, J. J. 1983. Bending waves in Saturn's rings. Icarus, 53, 185—206.CrossRefGoogle Scholar
Shu, F. H., Yuan, C., and Lissauer, J. J. 1985a. Nonlinear spiral density waves -an inviscid theory. Astrophys. J., 291, 356-376.CrossRefGoogle Scholar
Shu, F. H., Dones, L., Lissauer, J. J., Yuan, C., and Cuzzi, J. N. 1985b. Nonlinear spiral density waves —Viscous damping. Astrophys. J., 299, 542-573.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L., Beebe, R. E., et al. 1981. Encounter with Saturn -Voyager 1 imaging science results. Science, 212, 163-191.Google ScholarPubMed
Smith, B. A., Soderblom, L., Batson, R. M., et al. 1982. A new look at the Saturn system —The Voyager 2 images. Science, 215, 504—537.CrossRefGoogle Scholar
Spahn, E., and Sremčević, M. 2000. Density patterns induced by small moonlets in Saturn's rings? Astron. Astrophys., 358, 368-372.Google Scholar
Spilker, L., Ferrari, C., and Morishima, R. 2013. Saturn's ring temperatures at equinox. Icarus, 226, 316—322.CrossRefGoogle Scholar
Spitale, J. N. 2017. Saturn's Misbegotten Moonlets, DDA meeting #48, 400. 04.
Spitale, J. N., and Hahn, J. M. 2016. The shape of Saturn's Huygens ringlet viewed by Cassini ISS. Icarus, 279, 141-154.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2009. Time variability in the outer edge of Saturn's A-ring revealed by Cassini imaging. Astron. J., 138, 1520-1528.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2010. Detection of free unstable modes and massive bodies in Saturn's Outer Bring. Astron. J., 140, 1747-1757.CrossRefGoogle Scholar
Spitale, J. N., Jacobson, R. A., Porco, C. C., and Owen, Jr., W. M. 2006. The orbits of Saturn's small satellites derived from combined historic and Cassini imaging observations. Astron. J., 132, 692-710.CrossRefGoogle Scholar
Srama, R., Hsu, H., Kempf, S., and Horanyi, M. 2011. Constraints on the nanoscale minerals on the surface of Saturnian icy moons. AGU Fall Meeting Abstracts, Dec.
Sremčević, M., Spahn, E., and Duschl, W. J. 2002. Density structures in perturbed thin cold discs. MNRAS, 337, 1139-1152.CrossRefGoogle Scholar
Sremčević, M., Krivov, A. V., Kriiger, H., and Spahn, E. 2005. Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planet. Sp. Sci., 53, 625-641.CrossRefGoogle Scholar
Sremčević, M., et al. 2007. A belt of moonlets in Saturn's A ring. Nature, 449, 1019-1021.CrossRefGoogle ScholarPubMed
Sremčević, M., Esposito, L. W., Colwell, J. E., and Albers, N. 201 la. Bring gray ghosts in Cassini UVIS occultations. EPSC-DPS Joint Meeting, 1616.
Sremčević, M., Stewart, G., Albers, N., and Esposito, L. W. 2011b. Discovery of Bring propellers in Cassini UVIS and ISS. AGU Fall Meeting Abstracts, Dec.
Sremčević, M., Stewart, G. R., Albers, N., and Esposito, L. W. 2012 (Oct.). Discovery of Bring propellers in Cassini UVIS, and ISS. AAS/Division for Planetary Sciences Meeting Abstracts, 44, 513. 06.Google Scholar
Sremčević, M., Stewart, G. R., Albers, N., and Esposito, L. W. 2013. Propellers in Saturn's rings. AGU Fall Meeting Abstracts, Dec. Sremčević, M., Stewart, G. R., Albers, N., and Esposito, L. W. 2014 (Nov.). Propellers in Saturn A and Brings. AAS/Division for Planetary Sciences Meeting Abstracts, 46, 417. 01.Google Scholar
Sun, K. -L., Schmidt, J., and Spahn, E. 2015. Particle dynamics in the central ringlet of Saturn's Encke gap. arXiv: 1510. 07730
Sun, K. -L., Seiss, M., Hedman, M. M., and Spahn, E. 2017. Dust in the arcs of Methone and Anthe. Icarus, 284, 206—215.CrossRefGoogle Scholar
Thomas, P. C., Burns, J. A., Tiscareno, M. S., Hedman, M. M., and Helfenstein, P. 2013a. Saturn's mysterious arc-embedded moons: Recycled fluff? Lunar and Planetary Science Conference, 44, 1598.Google Scholar
Thomas, P. C., Burns, J. A., Hedman, M., et al. 2013b. The inner small satellites of Saturn: A variety of worlds. Icarus, 226, 999—1019.CrossRefGoogle Scholar
Thomson, E. S., Marouf, E. A., Tyler, G. L., French, R. G., and Rap-poport, N. J. 2007. Periodic microstructure in Saturn's rings A and B. Geophys. Res. Lett, 34, 24203.CrossRefGoogle Scholar
Throop, H. B., Porco, C. C., West, R. A., et al. 2004. The jovian rings: new results derived from Cassini, Galileo, Voyager, and Earth-based observations. Icarus, 172, 59-77.CrossRefGoogle Scholar
Tiscareno, M. S. 2013a. A modified Type I migration model for propeller moons in Saturn's rings. Planet. Sp. Sci., 11, 136-142.Google Scholar
Tiscareno, M. S. 2013b. Planetary Rings. Page 309.
Tiscareno, M. S., Burns, J. A., Hedman, M. M., et al. 2006. 100-metre-diameter moonlets in Saturn's A ring from observations of propeller structures. Nature, 440, 648-650.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Hedman, M. M., and Porco, C. C. 2008. The population of propellers in Saturn's A ring. Astron. J., 135, 1083-1091.CrossRefGoogle Scholar
Tiscareno, M. S., Perrine, R. P., Richardson, D. C., et al. 2010a. An analytic parameterization of self-gravity wakes in Saturn's rings, with application to occultations and propellers. Astron. J., 139, 492-503.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Sremčević, M., et al. 2010b. Physical characteristics and non-Keplerian orbital motion of “propeller” moons embedded in Saturn's rings. APJL, 718, L92-L96.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., and Castillo-Rogez, J. 2013a. Compositions and origins of outer planet systems: Insights from the Roche critical density. ApJL, 765, L28.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., Weiss, J. W., and Porco, C. C. 2013b. Probing the inner boundaries of Saturn's A ring with the Iapetus -1:0 nodal bending wave. Icarus, 224, 201-208.CrossRefGoogle Scholar
Torres, P. J., Madhusudhanan, P., and Esposito, L. W. 2013. Mathematical analysis of a model for moon-triggered clumping in Saturn's rings. Physica D Nonlinear Phenomena, 259, 55-62.CrossRefGoogle Scholar
Tseng, W. -L., Ip, W. -H., Johnson, R. E., Cassidy, T. A., and Elrod, M. K. 2010. The structure and time variability of the ring atmosphere and ionosphere. Icarus, 206, 382—389.CrossRefGoogle Scholar
Tseng, W. -L., Johnson, R. E., and Ip, W. -H. 2013. The atomic hydrogen cloud in the saturnian system. Planet. Sp. Sci., 85, 164-174.CrossRefGoogle Scholar
Tyler, G. L., Marouf, E. A., Simpson, R. A., Zebker, H. A., and Esh-leman, V. R. 1983. The microwave opacity of Saturn's rings at wavelengths of 3. 6 and 13 CM from Voyager 1 radio occultation. Icarus, 54, 160-188.CrossRefGoogle Scholar
Vahidinia, S., Cuzzi, J. N., Hedman, M., et al. 2011. Saturn's F ring grains: Aggregates made of crystalline water ice. Icarus, 215, 682-694.CrossRefGoogle Scholar
van Allen, J. A. 1982. Findings on rings and inner satellites of Saturn of Pioneer 11. Icarus, 51, 509-527.CrossRefGoogle Scholar
Ward, W. R. 1997. Protoplanet migration by nebula tides. Icarus, 126, 261-281.CrossRefGoogle Scholar
Ward, W. R., and Hahn, J. M. 1994. Damping of orbital inclinations by bending waves. Icarus, 110, 95-108.CrossRefGoogle Scholar
Warren, S. G. 1984. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 1206-1225.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles —Collisional interactions and physical nature. Pages 367-115 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Weiss, J. W., Porco, C. C., and Tiscareno, M. S. 2009. Ring edge waves and the masses of nearby satellites. Astron. J., 138, 272—286.CrossRefGoogle Scholar
West, R., Lavvas, P., Anderson, C, and Imanaka, H. 2014. Titan's haze. Pages 285-321 of: Mueller-Wodarg, I., Griffith, C, Lel-louch, E., and Cravens, T. (eds.), Titan: Surface, Atmosphere, and Magnetosphere. Cambridge University Press.Google Scholar
Williams, G. A., and Murray, C. D. 2011. Stability of co-orbital ring material with applications to the Janus-Epimetheus system. Icarus, 212, 275-293.CrossRefGoogle Scholar
Winter, O., Sfair, R., Mourao, D., et al. 2014. The Janus—Epimetheus ring and the micrometeoroids's flux at Saturn. 40th COSPAR Scientific Assembly, 40, 3642.Google Scholar
Winter, O. C., Mourao, D. C., Giuliatti Winter, S. M., Spahn, E., and da Cruz, C. 2007. Moonlets wandering on a leash-ring. MNRAS, 380, L54-L57.CrossRefGoogle Scholar
Winter, O. C., Mourao, D. C., and Giuliatti Winter, S. M. 2010. Short Lyapunov time: a method for identifying confined chaos. Astron. Astrophys., 523, A67.CrossRefGoogle Scholar
Wyatt, M. C. 2008. Evolution of debris disks. Ann. Rev. Astron. Astrophys., 46, 339-383.Google Scholar
Yasui, Y., Ohtsuki, K., and Daisaka, H. 2014. Gravitational accretion of particles onto moonlets embedded in Saturn's rings. Astrophys. J., 797, 93.CrossRefGoogle Scholar
Zebker, H. A., and Tyler, G. L. 1984. Thickness of Saturn's rings inferred from Voyager 1 observations of microwave scatter. Science, 223, 396-398.CrossRefGoogle ScholarPubMed
Zebker, H. A., Marouf, E. A., and Tyler, G. L. 1985. Saturn's rings -Particle size distributions for thin layer model. Icarus, 64, 531—548.CrossRefGoogle Scholar
Zhang, Z., Hayes, A. G., Janssen, M. A., et al. 2017. Cassini microwave observations provide clues to the origin of Saturn's C ring. Icarus, 281, 297-321.CrossRefGoogle Scholar
Zubko, V G., Mennella, V., Colangeli, L., and Bussoletti, E. 1996. Optical constants of cosmic carbon analogue grains. —I. Simulation of clustering by a modified continuous distribution of ellipsoids. MNRAS, 282, 1321-1329.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×