Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T04:09:29.560Z Has data issue: false hasContentIssue false

11 - Narrow Rings, Gaps, and Sharp Edges

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

P. D. Nicholson
Affiliation:
Cornell University Ithaca, New York, USA
R. G. French
Affiliation:
Wellesley College Wellesley, Massachusetts, USA
J. N. Spitale
Affiliation:
Planetary Science Institute Tucson, Arizona, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION

Although Saturn's broad A, B, and C rings epitomize the concept of “planetary rings” in the minds of most people, much of our detailed knowledge of ring dynamics has come from the investigation of smaller-scale features such as density and bending waves, the numerous narrow gaps and their embedded ringlets, and the sharp edges which often demarcate various ring regions. In the case of Uranus, almost all of the ring mass is in the form of narrow rings. Narrow ringlets and gaps, and their associated sharp edges (including those of broad rings) form the subject of this chapter, along with the dynamical theories their study has spawned and the puzzles that continue to surround them.

Examples of several narrow gaps and ringlets in Saturn's rings, as well as the very prominent sharp outer edge of the B ring, are shown in Figure 11.1, from French et al. (2016b). Here one can see a total of eight narrow gaps in the region known as the Cassini Division, ranging in width from 5 km to 360 km, as well as four narrow ringlets. At least six more narrow gaps are found in the outer A ring and in the C ring, while three additional narrow ringlets occur in the C ring. The present chapter will cover all of these features, as well as the ten narrow Uranian rings. Recently a pair of narrow, dense rings has been discovered around the centaur object, Chariklo (Braga-Ribas et al., 2014). These are discussed separately in Chapter 7. We also do not discuss the more tenuous and dusty Jovian and Neptunian ring systems, nor the dusty ringlets found at Saturn and Uranus, all of which are covered in Chapter 12. The complex and unique F ring is described in Chapter 13.

We begin with a short overview of the relevant observations and their limitations in Section 11.2, before reviewing the kinematics, systematic width variations and internal structure of narrow ringlets in Section 11.3. In Section 11.4 we discuss the gaps in Saturn's rings, including searches for any embedded satellites. Section 11.5 deals with individual ringlet and gap edges, especially those that are controlled by resonances with external satellites and those that show evidence for local perturbations by unseen, embedded objects.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 276 - 307
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbara, J. M., and Esposito, L. W. 2002. Moonlet collisions and the effects of tidally modified accretion in Saturn's F ring. Icarus, 160, 161-171.CrossRefGoogle Scholar
Borderies, N., and Longaretti, P. Y. 1987. Description and behavior of streamlines in planetary rings. Icarus, 72, 593-603.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983. The dynamics of elliptical rings. Astron. J., 88, 1560-1568.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1984. Unsolved problems in planetary ring dynamics. Pages 713-734 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. University of Arizona Press.Google Scholar
Borderies-Rappaport, N., and Longaretti, P. -Y. 1994. Test particle motion around an oblate planet. Icarus, 107, 129—141.CrossRefGoogle Scholar
Bosh, A. S. 1994. Stellar occultation studies of Saturn's rings with the Hubble Space Telescope. Ph. D. thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Bosh, A. S., Olkin, C. B., French, R. G., and Nicholson, P. D. 2002. Saturn's F ring: Kinematics and particle sizes from stellar occultation studies. Icarus, 157, 57-75.CrossRefGoogle Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. 2014. A ring system detected around the Centaur (10199) Chariklo. Nature, 508, 72-75.CrossRefGoogle Scholar
Chancia, R. O., Hedman, M. M., and French, R. G. 2015. A new look back at the structure of Uranus' narrow rings. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.
Charnoz, S., Morbidelli, A., Dones, L., and Salmon, J. 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus, 199, 413-428.CrossRefGoogle Scholar
Chiang, E. I., and Goldreich, P. 2000. Apse alignment of narrow eccentric planetary rings. Astrophys. J., 540, 1084-1090.CrossRefGoogle Scholar
Colwell, J. E., Cooney, J. H., Esposito, L. W., and Sremčević, M. 2009a. Density waves in Cassini UVIS stellar occultations. 1. The Cassini Division. Icarus, 200, 574-580.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009b. The structure of Saturn's rings. Pages 375-412 of: Saturn from Cassini-Huygens. Springer.Google Scholar
Cooke, M. L. 1991. Saturn's rings: Photometric studies of the C ring and radial variation in the Keeler gap. Ph. D. thesis, Cornell University, Ithaca, NY.Google Scholar
Cuzzi, J. N., and Burns, J. A. 1988. Charged particle depletion sur-rounding Saturn's F ring —Evidence for a moonlet belt? Icarus, 74, 284-324.CrossRefGoogle Scholar
Cuzzi, J. N., and Scargle, J. D. 1985. Wavy edges suggest moonlet in Encke's gap. Astrophys. J., 292, 276-290.CrossRefGoogle Scholar
Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., et al. 1984. Saturn's rings -Properties and processes. Pages 73—199 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. University of Arizona Press.Google Scholar
Dermott, S. F. 1984. Dynamics of narrow rings. Pages 589-637 of:Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Dollfus, A. 1980. Determination of the orbital elements of Janus, the 10th satellite of Saturn. Academie des Sciences Paris Comptes Rendus Serie B Sciences Physiques, 291, 177-180.Google Scholar
El Moutamid, M. E., Nicholson, P. D., Tiscareno, M., et al. 2016. How Janus' orbital swap affects the edge of Saturn's A ring? Icarus, 279, 125-140.CrossRefGoogle Scholar
Elliot, J. L., Dunham, E., and Mink, D. 1977. The rings of Uranus. Nature, 267, 328-330.CrossRefGoogle Scholar
Elliot, J. L., French, R. G., Meech, K. J., and Elias, J. H. 1984. Structure of the Uranian rings. I —Square-well model and particle-size constraints. Astron. J., 89, 1587-1603.CrossRefGoogle Scholar
Esposito, L. W., Borderies, N., Goldreich, P., et al. 1983. Eccentric ringlet in the Maxwell gap at 1. 45 Saturn radii Multi-instrument Voyager observations. Science, 111, 57—60.Google Scholar
Fountain, J. W., and Larson, S. M. 1978. Saturn's ring and nearby faint satellites. Icarus, 36, 92-106.CrossRefGoogle Scholar
French, R. G., and Nicholson, P. D. 1995. Edge waves and librations in the Uranus epsilon ring. Bulletin of the American Astronomical Society, vol. 27.Google Scholar
French, R. G., Elliot, J. L., and Levine, S. E. 1986a. Structure of the Uranian rings. II -Ring orbits and widths. Icarus, 67, 134-163.CrossRefGoogle Scholar
French, R. G., Kangas, J. A., and Elliot, J. L. 1986b. What perturbs the gamma and delta rings of Uranus? Science, 231, 480—483.CrossRefGoogle Scholar
French, R. G., Elliot, J. L., French, L. M., et al. 1988. Uranian ring orbits from earth-based and Voyager occultation observations. Icarus, 73, 349-378.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. 1991. Dynamics and structure of the uranian rings. Pages 327—409 of: Bergstralh, J. T., Miner, E. D., and Matthews, M. S. (eds.), Uranus. University of Arizona Press.Google Scholar
French, R. G., Nicholson, P. D., Cooke, M. L., et al. 1993. Geometry of the Saturn system from the 3 July 1989 occultation of 28 Sgr and Voyager observations. Icarus, 103, 163—214.CrossRefGoogle Scholar
French, R. G., Marouf, E. A., Rappaport, N. J., and McGhee, C. A. 2010. Occultation observations of Saturn's Bring and Cassini Division. Astron. J., 139, 1649-1667.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Hedman, M. M., et al. 2016a. Deciphering the embedded wave in Saturn's Maxwell ringlet. Icarus, 279, 62-77.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., McGhee-French, C. A., et al. 2016b. Noncircular features in Saturn's rings III: The Cassini Division. Icarus, 274, 131-162.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. D. 1978. The formation of the Cassini Division in Saturn's rings. Icarus, 34, 240—253.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1979a. Precession of the epsilon ring of Uranus. Astron. J., 84, 1638-1641.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1979b. Towards a theory for the uranian rings. Nature, 277, 97-99.CrossRefGoogle Scholar
Graps, A. L., Showalter, M. R., Lissauer, J. J., and Kary, D. M. 1995. Optical depth profiles and streamlines of the uranian e ring. Astron. J., 109, 2262.CrossRefGoogle Scholar
Harrington, R. S., and Seidelmann, P. K. 1981. The dynamics of the Saturnian satellites 1980S1 and 1980S3. Icarus, 47, 97-99.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2013. Kronoseismology: Using density waves in Saturn's C ring to probe the planet's interior. Astron. J., 146, 12.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2014. More Kronoseismology with Saturn's rings. Mon. Not. Royal Astron. Soc, 444, 1369—1388.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2016. The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, 279, 109-124.
Hedman, M. M., Nicholson, P. D., Salo, H., et al. 2007. Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astron. J., 133, 2624-2629.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Baines, K. H., et al. 2010. The architecture of the Cassini Division. Astron. J., 139, 228—251.CrossRefGoogle Scholar
Holberg, J. B., Forrester, W. T., and Lissauer, J. J. 1982. Identification of resonance features within the rings of Saturn. Nature, 297, 115-120.CrossRefGoogle Scholar
Holberg, J. B., Nicholson, P. D., French, R. G., and Elliot, J. L. 1987. Stellar occultation probes of the Uranian rings at 0. 1 and 2. 2 microns —A comparison of Voyager UVS and earth-based results. Astron. J., 94, 178-188.CrossRefGoogle Scholar
Horn, L. J., Lane, A. L., Yanamandra-Fisher, P. A., and Esposito, L. W. 1988. Physical properties of uranian delta ring from a possible density wave. Icarus, 76, 485-92.CrossRefGoogle Scholar
Horn, L. J., Showalter, M. R., and Russell, C. T. 1996. Detection and behavior of Pan wakes in Saturn's A ring. Icarus, 124, 663-676.CrossRefGoogle Scholar
Hubbard, W. B., Porco, C. C., Hunten, D. M., et al. 1993. The occultation of 28 Sgr by Saturn —Saturn pole position and astrometry. Icarus, 103, 215-234.CrossRefGoogle Scholar
Jacobson, R. A. 2007. The gravity field of the uranian system and the orbits of the uranian satellites and rings. Bulletin of the American Astronomical Society, vol. 39.Google Scholar
Jerousek, R. G., Colwell, J. E., and Esposito, L. W. 2011. Morphology and variability of the Titan ringlet and Huygens ringlet edges. Icarus, 216, 280-291.CrossRefGoogle Scholar
Julian, W. H., and Toomre, A. 1966. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J., 146, 810-830.CrossRefGoogle Scholar
Kaspi, Y., Showman, A. P., Hubbard, W. B., Aharonson, O., and Helled, R. 2013. Atmospheric confinement of jet streams on Uranus and Neptune. Nature, 497, 344-347.CrossRefGoogle ScholarPubMed
Kirkwood, K. 1867. Meteoric Astronomy. J. B. Lippincott & Co.Google Scholar
Lainey, V., Karatekin, O., Desmars, J., et al. 2012. Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry. Astrophys. J., 752, 14.CrossRefGoogle Scholar
Lane, A. L., Hord, C. W., West, R. A., et al. 1982. Photopolarimetry from Voyager 2 -Preliminary results on Saturn, Titan, and the rings. Science, 215, 537—543.CrossRefGoogle ScholarPubMed
Lewis, M. C., and Stewart, G. R. 2009. Features around embedded moonlets in Saturn's rings: The role of self-gravity and particle size distributions. Icarus, 199, 387-412.CrossRefGoogle Scholar
Lissauer, J. J., Goldreich, P., and Tremaine, S. 1985. Evolution of the Janus—Epimetheus coorbital resonance due to torques from Saturn's rings. Icarus, 64, 425—434.CrossRefGoogle Scholar
Longaretti, P. -Y 1989. Uranian ring dynamics —an analysis of multimode motions. Icarus, 82, 281-287.CrossRefGoogle Scholar
Marley, M. S., and Porco, C. C. 1993. Planetary acoustic mode seismology —Saturn's rings. Icarus, 106, 508—524.CrossRefGoogle Scholar
Marouf, E. A., Tyler, G. L., and Rosen, P. A. 1986. Profiling Saturn's rings by radio occultation. Icarus, 68, 120-166.CrossRefGoogle Scholar
Marouf, E. A., Gresh, D. L., and Tyler, G. L. 1987. Eccentricity gradients of Uranus' epsilon, beta, and alpha rings. Bulletin of the American Astronomical Society, vol. 19.Google Scholar
Marsden, B. 1980. Satellites of Saturn. IAUCirc, 3532.
Murray, C. D., Beurle, K., Cooper, N. J., et al. 2008. The determination of the structure of Saturn's F ring by nearby moonlets. Nature, 453, 739-744.CrossRefGoogle ScholarPubMed
Murray, C. D., Cooper, N. J., Williams, G. A., Attree, N. O., and Boyer, J. S. 2014. The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring. Icarus, 236, 165-168.CrossRefGoogle Scholar
Nettelmann, N., HeUed, R., Fortney, J. J., and Redmer, R. 2013. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Plan. Space Sci, 11, 143-151.Google Scholar
Nicholson, P. D., and Porco, C. C. 1988. A new constraint on Saturn's zonal gravity harmonics from Voyager observations of an eccentric ringlet. J. Geophys. Res., 93, 10209-10224.CrossRefGoogle Scholar
Nicholson, P. D., Persson, S. E., Matthews, K., Goldreich, P., and Neugebauer, G. 1978. The rings of Uranus —Results of the 10 April 1978 occultation. Astron. J., 83, 1240-1248.CrossRefGoogle Scholar
Nicholson, P. D., Matthews, K., and Goldreich, P. 1981. The Uranus occultation of 10 June 1979. I -The rings. Astron. J., 86, 596-606.CrossRefGoogle Scholar
Nicholson, P. D., Matthews, K., and Goldreich, P. 1982. Radial widths, optical depths, and eccentricities of the Uranian rings. Astron. J., 87, 433-47.CrossRefGoogle Scholar
Nicholson, P. D., Cooke, M. L., and Pelton, E. 1990. An absolute radius scale for Saturn's rings. Astron. J., 100, 1339—1362.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., Tollestrup, E., et al. 2000. Saturn's rings I. Optical depth profiles from the 28 Sgr occultation. Icarus, 145, 474-501.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., Hedman, M. M., Marouf, E. A., and Colwell, J. E. 2014a. Noncircular features in Saturn's rings I: The edge of the Bring. Icarus, 227, 152-175.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., McGhee-French, C. A., et al. 2014b. Noncircular features in Saturn's rings II: The C ring. Icarus, 241, 373-396.CrossRefGoogle Scholar
Osterbrock, D. E., and Cruikshank, D. P. 1983. J. E. Keeler's discovery of a gap in the outer part of the A ring. Icarus, 53, 165-173.CrossRefGoogle Scholar
Porco, C. C. 2005. S/2005 S 1. IAUCirc, 8524.
Porco, C. C., and Goldreich, P. 1987. Shepherding of the Uranian rings. I -Kinematics. Astron. J., 93, 724-737.CrossRefGoogle Scholar
Porco, C. C., and Nicholson, P. D. 1987. Eccentric features in Saturn's outer C ring. Icarus, 72, 437-67.CrossRefGoogle Scholar
Porco, C., Danielson, G. E., Goldreich, P., Holberg, J. B., and Lane, A. L. 1984a. Saturn's nonaxisymmetric ring edges at 1. 95 R(s) and 2. 27 R(s). Icarus, 60, 17-28.CrossRefGoogle Scholar
Porco, C., Nicholson, P. D., Borderies, N., et al. 1984b. The eccentric saturnian ringlets at 1. 29 R(s) and 1. 45 R(s). Icarus, 60, 1-16.Google Scholar
Porco, C. C., West, R. A., Squyres, S., et al. 2004. Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Pages 363—497 of: The Cassini-Huygens Mission —Orbiter Remote Sensing Investigations. Springer.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science, 307, 1226-1236.Google ScholarPubMed
Porco, C. C., Thomas, P. C., Weiss, J. W., and Richardson, D. C. 2007. Saturn's small inner satellites: Clues to their origins. Science, 318, 1602.CrossRefGoogle ScholarPubMed
Poulet, E., Sicardy, B., Nicholson, P. D., Karkoschka, E., and Caldwell, J. 2000. Saturn's ring-plane crossings of August and November 1995: A model for the new F-ring objects. Icarus, 144, 135-148.CrossRefGoogle Scholar
SeiB, M., Spahn, F., Sremčević, M., and Salo, H. 2005. Structures induced by small moonlets in Saturn's rings: Implications for the Cassini Mission. Geophys. Res. Let., 32, LI 1205.Google Scholar
Showalter, M. R. 1991. Visual detection of 1981S13, Saturn's eighteenth satellite, and its role in the Encke gap. Nature, 351, 709-713.CrossRefGoogle Scholar
Showalter, M. R. 2011. The rings of Uranus: Shepherded, or not? Page 1224 of: EPSC-DPS Joint Meeting 2011.
Showalter, M. R., and Lissauer, J. J. 2006. The second ring-moon system of Uranus: Discovery and dynamics. Science, 311, 973-977.CrossRefGoogle ScholarPubMed
Showalter, M. R., Cuzzi, J. N., Marouf, E. A., and Esposito, L. W. 1986. Satellite ‘wakes’ and the orbit of the Encke gap moonlet. Icarus, 66, 297-323.CrossRefGoogle Scholar
Shu, F. H. 1984. Waves in planetary rings. Pages 513-561 of: Green-berg, R., and Brahic, A. (eds.), Planetary Rings. University of Arizona Press.Google Scholar
Smith, B. A., Soderblom, L., Batson, R. M., et al. 1982. A new look at the Saturn system -The Voyager 2 images. Science, 215, 504-537.CrossRefGoogle Scholar
Spitale, J. N., and Hahn, J. M. 2016. The shape of Saturn's Huygens ringlet viewed by Cassini ISS. Icarus, 279, 141-154.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2009. Time variability in the outer edge of Saturn's A-ring revealed by Cassini imaging. Astron. J., 138, 1520-1528.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2010. Detection of free unstable modes and massive bodies in Saturn's outer Bring. Astron. J., 140, 1747-1757.CrossRefGoogle Scholar
Spitale, J. N., and Tiscareno, M. 2012. Cassini Images A Propeller In Saturn's B-ring. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44.Google Scholar
Spitale, J., Porco, C., and Colwell, J. 2006a. Shapes and kinematics of eccentric features in Saturn's rings from Cassini imaging and occultation observations. Bulletin of the American Astronomical Society, vol. 38.Google Scholar
Spitale, J. N., Jacobson, R. A., Porco, C. C., and Owen, Jr., W M. 2006b. The orbits of Saturn's small satellites derived from combined historic and Cassini imaging observations. Astron. J., 132, 692-710.CrossRefGoogle Scholar
Sremčević, M., Spahn, E., and Duschl, W. J. 2002. Density structures in perturbed thin cold discs. Mon. Not. Roy. Astron. Soc, 337, 1139-1152.CrossRefGoogle Scholar
Tajeddine, R., Nicholson, P. D., Hedman, M. M., et al. 2014. Prometheus and the Keeler gap. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.
Tajeddine, R., Nicholson, P. D., Tiscareno, M. S., Hedman, M. M., and Burns, J. A. 2017. Dynamical phenomena at the inner edge of the Keeler gap. Icarus, 289, 80-93.CrossRefGoogle Scholar
Tiscareno, M. S., and Arnault, E. G. 2015. Wisps in the outer edge of the Keeler gap. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.
Tiscareno, M. S., Burns, J. A., Hedman, M. M., et al. 2005. Wavy edges and other disturbances in Saturn's Encke and Keeler gaps. Bulletin of the American Astronomical Society, vol. 37.Google Scholar
Tiscareno, M. S., Burns, J. A., Hedman, M. M., et al. 2006. 100-metre-diameter moonlets in Saturn's A ring from observations of “propeller” structures. Nature, 440, 648—650.CrossRefGoogle ScholarPubMed
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., and Porco, C. C. 2007. Cassini imaging of Saturn's rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14—34.Google Scholar
Tiscareno, M. S., Burns, J. A., Sremčević, M., et al. 2010. Physical characteristics and non-keplerian orbital motion of “propeller” moons embedded in Saturn's rings. Ap. J. Lett., 718, L92-L96.CrossRefGoogle Scholar
Torrey, P. A., Tiscareno, M. S., Burns, J. A., and Porco, C. C. 2008. Mapping complexity: The wavy edges of the Encke and Keeler gaps in Saturn's rings. AAS/Division of Dynamical Astronomy Meeting, vol. 39.
Weiss, J. W., Porco, C. C., and Tiscareno, M. S. 2009. Ring edge waves and the masses of nearby satellites. Astron. J., 138, 272—286.CrossRefGoogle Scholar
Yoder, C. E., Colombo, G., Synnott, S. P., and Yoder, K. A. 1983. Theory of motion of Saturn's coorbiting satellites. Icarus, 53, 431-443.CrossRefGoogle Scholar
Yoder, C. F., Synnott, S. P., and Salo, H. 1989. Orbits and masses of Saturn's co-orbiting satellites, Janus and Epimetheus. Astron. J., 98, 1875-1889.CrossRefGoogle Scholar
Zebker, H. A., Marouf, E. A., and Tyler, G. L. 1985. Saturn's rings -Particle size distributions for thin layer model. Icarus, 64, 531—548.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×