Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T17:40:45.132Z Has data issue: false hasContentIssue false

3 - Carotenoid metabolism in phytoplankton

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

Carotenoids are among the natural products with the highest diversity. To date more than 700 different naturally occurring carotenoids have been described (Britton et al., 2004), and they are virtually ubiquitous in living organisms. Carotenoids belong to the compound class of isoprenoids, and the majority of carotenoids are tetraterpenoids with a C40 skeleton as the basic molecular structure. Formally, they can be divided into the carotenes, which are pure hydrocarbons, and the xanthophylls, which are derived from carotenes by introduction of oxygen functions. The ability of de novo biosynthesis of carotenoids is not limited to land plants and algae, but is frequently encountered among prokaryotes (both eubacteria and archaebacteria) and fungi (Britton, 1998). To meet their metabolic demands, animals rely on food-borne uptake of carotenoids which then, however, can be further metabolized. An important example is β-carotene (provitamin A; trivial names for carotenes are used in this chapter – see Data sheets for alternative names such as β,β-carotene in this case) as a precursor of the visual pigment retinal in mammals and animals in general (Goodwin, 1984; von Lintig et al., 2005) or – together with its hydroxylated derivatives – as precursors of ketocarotenoids used as colourants by many crustaceans, various carp species and birds like flamingos or finches (Goodwin, 1984; McGraw et al., 2006). This chapter summarizes our current view on the biosynthesis of carotenoids, termed carotenogenesis, in land plants, cyanobacteria and algae with a focus on recent advances in the genetics of carotenoid biosynthesis. The scope of this review will be limited to oxygenic phototrophs; for details on the carotenogenesis of anoxygenic phototrophic bacteria, readers are referred to an excellent recent review by Maresca, Graham and Bryant (Maresca et al., 2008).

When the chapter on carotenoids in the volume by Jeffrey et al. (1997) was written, only the enzymes of the cytosolic mevalonic acid pathway of isoprene formation and those catalysing the early steps of carotenoid biosynthesis up to the carotenes were known. During the last decade, most of the genes involved in carotenogenesis in cyanobacteria and in land plants have been identified, and a new pathway of isoprene formation that is operative in many bacteria and in plastids has been discovered. Most of our current knowledge about the biosynthesis of carotenoids in oxygenic phototrophs stems from work on seed plants and cyanobacteria, and to some extent on green algae. Almost no experimental data are available from other algal groups, but increasingly more whole-genome data are generated enabling homology-based identification of potential carotenogenic genes in these algae. As will be discussed, the emerging picture is rather complex with a significant number of reactions being catalysed by multiple enzymes which are often phylogenetically unrelated. Other enzymes share the same ancestor, but yet catalyse different reactions. In the following, the known enzymatic steps of carotenogenesis in oxygenic phototrophs will be summarized, with special reference to carotenoid biosynthesis in algae and cyanobacteria.

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 113 - 162
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P.Hecht, S.Eisenreich, W. G.Kaiser, J.Grawert, T.Arigoni, D.Bacher, A.Rohdich, F. 2002 Biosynthesis of terpenes: Studies on 1-hydroxy-2-methyl-2-()-butenyl 4-diphosphate reductaseProc. Natl. Acad. Sci. USA 99 12108CrossRefGoogle Scholar
Al-Babili, S.Hugueney, P.Schledz, M.Welsch, R.Frohnmeyer, H.Laule, O.Beyer, P. 2000 Identification of a novel gene coding for neoxanthin synthase from FEBS Lett 485 168CrossRefGoogle Scholar
Alder, A.Holdermann, I.Beyer, P.Al-Babili, S. 2008 Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reactionBiochem. J 416 289CrossRefGoogle ScholarPubMed
Alder, A.Bigler, P.Werck-Reichhart, D.Al-Babili, S. 2009 characterization of CYP120A1 revealed the first nonanimal retinoic acid hydroxylaseFEBS J 276 5416CrossRefGoogle ScholarPubMed
Andersson, M.Schubert, H.Pedersen, M.Snoeijs, P. 2006 Different patterns of carotenoid composition and photosynthesis acclimation in two tropical red algaeMar. Biol 149 653CrossRefGoogle Scholar
Andreeva, A. V.Kutuzov, M. A. 2001 Do plants have rhodopsin after all? A mystery of plant G protein-coupled signallingPlant Physiol. Biochem 39 1027CrossRefGoogle Scholar
Antia, N. J.Cheng, J. Y. 1982 The keto-carotenoids of two marine coccoid members of the EustigmatophyceaeBr. Phycol. J 17 39CrossRefGoogle Scholar
Anwaruzzaman, M.Chin, B. L.Li, X. P.Lohr, M.Martinez, D. A.Niyogi, K. K. 2004 Genomic analysis of mutants affecting xanthophyll biosynthesis and regulation of photosynthetic light harvesting in Photosynth. Res 82 265CrossRefGoogle Scholar
Armstrong, G. A. 1997 Genetics of eubacterial carotenoid biosynthesis: A colorful taleAnnu. Rev. Microbiol 51 629CrossRefGoogle ScholarPubMed
Auldridge, M. E.McCarty, D. R.Klee, H. J. 2006 Plant carotenoid cleavage oxygenases and their apocarotenoid productsCurr. Opin. Plant Biol 9 315CrossRefGoogle ScholarPubMed
Baroli, I.Do, A. D.Yamane, T.Niyogi, K. K. 2003 Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects from photooxidative stressPlant Cell 15 992CrossRefGoogle ScholarPubMed
Bartley, G. E.Viitanen, P. V.Pecker, I.Chamovitz, D.Hirschberg, J.Scolnik, P. A. 1991 Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathwayProc. Natl. Acad. Sci. USA 88 6532CrossRefGoogle ScholarPubMed
Bartley, G. E.Scolnik, P. A.Beyer, P. 1999 Two carotene desaturases, phytoene desaturase and ζ-carotene desaturase, expressed in , catalyze a poly- pathway to yield pro-lycopeneEur. J. Biochem 259 396CrossRefGoogle ScholarPubMed
Becker, B.Hoef-Emden, K.Melkonian, M. 2008 Chlamydial genes shed light on the evolution of photoautotrophic eukaryotesBMC Evol. Biol 8 203CrossRefGoogle ScholarPubMed
Berger, R.Liaaen-Jensen, S.McAlister, V.Guillard, R. R. L. 1977 Carotenoids of Prymnesiophyceae (Haptophyceae)Biochem. Syst. Ecol 5 71CrossRefGoogle Scholar
Bjørnland, T. 1990 Chromatographic separation and spectrometric characterization of native carotenoids from the marine dinoflagellate Biochem. Syst. Ecol 18 307CrossRefGoogle Scholar
Bjørnland, T.Aguilar-Martinez, M. 1976 Carotenoids in red algaePhytochemistry 15 291CrossRefGoogle Scholar
Bjørnland, T.Liaaen-Jensen, S. 1989 Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematicsThe Chromophyte Algae: Problems and PerspectivesGreen, J. C.Leadbeater, B. S. C.Diver, W. L.OxfordClarendon Press37Google Scholar
Böhme, K.Wilhelm, C.Goss, R. 2002 Light regulation of carotenoid biosynthesis in the prasinophycean alga Photochem. Photobiol. Sci 1 619CrossRefGoogle ScholarPubMed
Bolte, K.Bullmann, L.Hempel, F.Bozarth, A.Zauner, S.Maier, U. -G. 2009 Protein targeting into secondary plastidsJ. Eukaryot. Microbiol 56 9CrossRefGoogle ScholarPubMed
Bonnett, R.Mallams, A. K.Spark, A. A.Tee, J. L.Weedon, B. C. L.McCormick, A. 1969 Carotenoids and related compounds. Part XX. Structure and reactions of fucoxanthinJ. Chem. Soc. C429CrossRefGoogle Scholar
Booker, J.Auldridge, M.Wills, S.McCarty, D.Klee, H.Leyser, C. 2004 MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling moleculeCurr. Biol 14 1232CrossRefGoogle ScholarPubMed
Boussiba, S. 2000 Carotenogenesis in the green alga : Cellular physiology and stress responsePhysiol. Plant 108 111CrossRefGoogle Scholar
Bouvier, F.D'Harlingue, A.Backhaus, R. A.Kumagai, M. H.Camara, B. 2000 Identification of neoxanthin synthase as a carotenoid cyclase paralogEur. J. Biochem 267 6346CrossRefGoogle ScholarPubMed
Bouvier, F.Isner, J. C.Dogbo, O.Camara, B. 2005 Oxidative tailoring of carotenoids: a prospect towards novel functions in plantsTrends Plant Sci 10 187CrossRefGoogle ScholarPubMed
Bouvier, F.Rahier, A.Camara, B. 2005 Biogenesis, molecular regulation and function of plant isoprenoidsProg. Lipid Res 44 357CrossRefGoogle ScholarPubMed
Boyer, G. L.Dougherty, S. S. 1988 Identification of abscisic acid in the seaweed Phytochemistry 27 1521CrossRefGoogle Scholar
Breitenbach, J.Sandmann, G. 2005 ζ-carotene isomers as products and substrates in the plant poly- carotenoid biosynthetic pathway to lycopenePlanta 220 785CrossRefGoogle ScholarPubMed
Breitenbach, J.Misawa, N.Kajiwara, S.Sandmann, G. 1996 Expression in and properties of the carotene ketolase from FEMS Microbiol. Lett 140 241CrossRefGoogle Scholar
Breitenbach, J.Vioque, A.Sandmann, G. 2001 Gene from 6803 encodes a carotene isomerase involved in the biosynthesis of all- lycopeneZ. Naturforsch. C 56 915CrossRefGoogle ScholarPubMed
Britton, G. 1998 Overview of Carotenoid BiosynthesisCarotenoids, vol. 3, Biosynthesis and MetabolismBritton, G.Liaaen-Jensen, S.Pfander, H.Basel, Birkhäuser13Google Scholar
Britton, G.Liaaen-Jensen, S.Pfander, H.Mercadante, A. Z.Egeland, E. S. 2004 Carotenoids. HandbookBaselBirkhäuser VerlagCrossRefGoogle Scholar
Budziszewski, G. J.Lewis, S. P.Glover, L. W.Reineke, J.Jones, G.Ziemnik, L. S.Lonowski, J.Nyfeler, B.Aux, G.Zhou, Q.McElver, J.Patton, D. A.Martienssen, R.Grossniklaus, U.Ma, H.Law, M.Levin, J. Z. 2001 genes essential for seedling viability: Isolation of insertional mutants and molecular cloningGenetics 159 1765Google ScholarPubMed
Bugos, R. C.Yamamoto, H. Y. 1996 Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Proc. Natl. Acad. Sci. USA 93 6320CrossRefGoogle ScholarPubMed
Bugos, R. C.Hieber, A. D.Yamamoto, H. Y. 1998 Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plantsJ. Biol. Chem 273 15321CrossRefGoogle ScholarPubMed
Butler, L. G. 1995 Chemical communication between the parasitic weed and its crop host – a new dimension in allelochemistryAllelopathy – Organisms, Processes, and ApplicationsInderjit, A.Dakshini, K. M. M.Einhellig, F. A.WashingtonAmerican Chemical Society158Google Scholar
Carol, P.Stevenson, D.Bisanz, C.Breitenbach, J.Sandmann, G.Mache, R.Coupland, G.Kuntz, M. 1999 Mutations in the gene cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturationPlant Cell 11 57CrossRefGoogle Scholar
Carretero-Paulet, L.Cairó, A.Botella-Pavía, P.Besumbes, O.Campos, N.Boronat, A.Rodríguez-Concepción, M. 2006 Enhanced flux through the methylerythritol 4-phosphate pathway in plants overexpressing deoxyxylulose 5-phosphate reductoisomerasePlant Mol. Biol 62 683CrossRefGoogle ScholarPubMed
Chernys, J. T.Zeevaart, J. A. D. 2000 Characterization of the 9--epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocadoPlant Physiol 124 343CrossRefGoogle ScholarPubMed
Coesel, S.Oborník, M.Varela, J.Falciatore, A.Bowler, C. 2008 Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatomsPLoS ONE 3 e2896CrossRefGoogle ScholarPubMed
Cowan, A. K.Rose, P. D. 1991 Abscisic acid metabolism in salt-stressed cells of : possible interrelationship with β-carotene accumulationPlant Physiol 97 798CrossRefGoogle ScholarPubMed
Cunningham, F. X. 2002 Regulation of carotenoid synthesis and accumulation in plantsPure Appl. Chem 74 1409CrossRefGoogle Scholar
Cunningham, F. X.Schiff, J. A. 1985 Photoisomerization of ζ-carotene stereoisomers in cells of mutant W3BUL and in solutionPhotochem. Photobiol 42 295CrossRefGoogle ScholarPubMed
Cunningham, F. X.Sun, Z. R.Chamovitz, D.Hirschberg, J.Gantt, E. 1994 Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium sp. strain PCC7942Plant Cell 6 1107CrossRefGoogle ScholarPubMed
Cunningham, F. X.Pogson, B.Sun, Z. R.McDonald, K. A.DellaPenna, D.Gantt, E. 1996 Functional analysis of the β and ε lycopene cyclase enzymes of reveals a mechanism for control of cyclic carotenoid formationPlant Cell 8 1613Google ScholarPubMed
Cunningham, F. X.Lee, H.Gantt, E. 2007 Carotenoid biosynthesis in the primitive red alga Eukaryot. Cell 6 533CrossRefGoogle ScholarPubMed
Delphin, E.Duval, J. C.Etienne, A. L.Kirilovsky, D. 1998 Delta pH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algaePlant Physiol 118 103CrossRefGoogle Scholar
Derguini, F.Mazur, P.Nakanishi, K.Starace, D. M.Saranak, J.Foster, K. W. 1991 All- retinal is the chromophore bound to the photoreceptor of the alga Photochem. Photobiol 54 1017CrossRefGoogle ScholarPubMed
Destefano-Beltran, L.Knauber, D.Huckle, L.Suttle, J. C. 2006 Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissuesPlant Mol. Biol 61 687CrossRefGoogle ScholarPubMed
Dimier, C.Giovanni, S.Ferdinando, T.Brunet, C. 2009 Comparative ecophysiology of the xanthophyll cycle in six marine phytoplanktonic speciesProtist 160 397CrossRefGoogle ScholarPubMed
Disch, A.Schwender, J.Müller, C.Lichtenthaler, H. K.Rohmer, M. 1998 Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium PCC 6714Biochem. J 333 381CrossRefGoogle ScholarPubMed
Domonkos, I.Malec, P.Laczko-Dobos, H.Sozer, O.Klodawska, K.Wada, H.Strzalka, K.Gombos, Z. 2009 Phosphatidylglycerol depletion induces an increase in myxoxanthophyll biosynthetic activity in PCC6803 cellsPlant Cell Physiol 50 374CrossRefGoogle ScholarPubMed
Dun, E. A.Brewer, P. B.Beveridge, C. A. 2009 Strigolactones: discovery of the elusive shoot branching hormoneTrends Plant Sci 14 364CrossRefGoogle ScholarPubMed
Egeland, E. S.Eikrem, W.Throndsen, J.Wilhelm, C.Zapata, M.Liaaen-Jensen, S. 1995 Carotenoids from further prasinophytesBiochem. Syst. Ecol 23 747CrossRefGoogle Scholar
Egeland, E. S.Eikrem, W.Throndsen, J.Wilhelm, C.Zapata, M.Liaaen-Jensen, S. 1996 Erratum to ‘Carotenoids from further prasinophytes’Biochem. Syst. Ecol 24 179Google Scholar
Egeland, E. S.Guillard, R. R. L.Liaaen-Jensen, S. 1997 Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta)Phytochemistry 44 1087CrossRefGoogle Scholar
Egeland, E. S.Garrido, J. L.Zapata, M.Maestro, M. A.Liaaen-Jensen, S. 2000 Algal carotenoids. Part 64. Structure and chemistry of 4-keto-19'-hexanoyloxyfucoxanthin with a novel carotenoid end groupJ. Chem. Soc. Perkin Trans. 11223CrossRefGoogle Scholar
Eisenreich, W.Bacher, A.Arigoni, D.Rohdich, F. 2004 Biosynthesis of isoprenoids via the non-mevalonate pathwayCell. Mol. Life Sci 61 1401CrossRefGoogle ScholarPubMed
Esch, H.Hundeshagen, B.Schneiderpoetsch, H.Bothe, H. 1994 Demonstration of abscisic acid in spores and hyphae of the arbuscular mycorrhizal fungus and in the N2-fixing cyanobacterium Plant Sci 99 9CrossRefGoogle Scholar
Esteban, R.Martínez, B.Fernández-Marín, B.Becerril, J. M.García-Plazaola, J. I. 2009 Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Eur. J. Phycol 44 221CrossRefGoogle Scholar
Estrada, A. F.Brefort, T.Mengel, C.Díaz-Sánchez, V.Alder, A.Al-Babili, S.Avalos, J. 2009 accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenaseFungal Genet. Biol 46 803CrossRefGoogle ScholarPubMed
Fernández-González, B.Sandmann, G.Vioque, A. 1997 A new type of asymmetrically acting β-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium sp. PCC 6803J. Biol. Chem 272 9728CrossRefGoogle ScholarPubMed
Fiore, A.Dall'Osto, L.Fraser, P. D.Bassi, R.Giuliano, G. 2006 Elucidation of the β-carotene hydroxylation pathway in FEBS Lett 580 4718CrossRefGoogle ScholarPubMed
Foss, P.Skulberg, O. M.Kilaas, L.Liaaen-Jensen, S. 1986 The carbohydrate moieties bound to the carotenoids myxol and oscillol and their chemosystematic applicationsPhytochemistry 25 1127CrossRefGoogle Scholar
Foster, K. W.Saranak, J.Patel, N.Zarilli, G.Okabe, M.Kline, T.Nakanishi, K. 1984 A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Nature 311 756CrossRefGoogle ScholarPubMed
Fraser, P. D.Miura, Y.Misawa, N. 1997 characterization of astaxanthin biosynthetic enzymesJ. Biol. Chem 272 6128CrossRefGoogle ScholarPubMed
Fraser, P. D.Shimada, H.Misawa, N. 1998 Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate assayEur. J. Biochem 252 229CrossRefGoogle Scholar
Frassanito, R.Flaim, G.Mancini, I.Guella, G. 2006 High production of unexpected carotenoids in Dinophyceae. Astaxanthin esters from the freshwater dinoflagellate Biochem. Syst. Ecol 34 843CrossRefGoogle Scholar
Frigaard, N. U.Maresca, J. A.Yunker, C. E.Jones, A. D.Bryant, D. A. 2004 Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium J. Bacteriol 186 5210CrossRefGoogle ScholarPubMed
Frommolt, R.Werner, S.Paulsen, H.Goss, R.Wilhelm, C.Zauner, S.Maier, U. G.Grossman, A. R.Bhattacharya, D.Lohr, M. 2008 Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesisMol. Biol. Evol 25 2653CrossRefGoogle ScholarPubMed
García-Plazaola, J. I.Matsubara, S.Osmond, C. B. 2007 The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functionsFunct. Plant Biol 34 759CrossRefGoogle Scholar
Garrido, J. L.Rodríguez, F.Zapata, M. 2009 Occurrence of loroxanthin, loroxanthin decenoate, and loroxanthin dodecenoate in species (Prasinophyceae, Chlorophyta)J. Phycol 45 366CrossRefGoogle Scholar
Giuliano, G.Al-Babili, S.von Lintig, J. 2003 Carotenoid oxygenases: cleave it or leave itTrends Plant Sci 8 145CrossRefGoogle ScholarPubMed
Goericke, R.Welschmeyer, N. A. 1992 Pigment turnover in the marine diatom . II. The 14CO2-labeling kinetics of carotenoidsJ. Phycol 28 507CrossRefGoogle Scholar
Gomez-Roldan, V.Fermas, S.Brewer, P. B.Puech-Pagès, V.Dun, E. A.Pillot, J. P.Letisse, F.Matusova, R.Danoun, S.Portais, J. C.Bouwmeester, H.Bécard, G.Beveridge, C. A.Rameau, C.Rochange, S. F. 2008 Strigolactone inhibition of shoot branchingNature 455 189CrossRefGoogle ScholarPubMed
Goodwin, T. W. 1980 The Biochemistry of the Carotenoids, vol. I: PlantsLondonChapman & HallCrossRefGoogle Scholar
Goodwin, T. W. 1984 The Biochemistry of the Carotenoids, vol. II: AnimalsLondonChapman & HallCrossRefGoogle Scholar
Graham, J. E.Bryant, D. A. 2008 The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium sp. strain PCC 7002J. Bacteriol 190 7966CrossRefGoogle ScholarPubMed
Graham, J. E.Bryant, D. A. 2009 The biosynthetic pathway for myxol 2'-fucoside (myxoxanthophyll) in the cyanobacterium sp. strain PCC 7002J. Bacteriol 191 3292CrossRefGoogle Scholar
Graham, J. E.Lecomte, J. T. J.Bryant, D. A. 2008 Synechoxanthin, an aromatic C40 xanthophyll that is a major carotenoid in the cyanobacterium sp. PCC 7002J. Nat. Prod 71 1647CrossRefGoogle ScholarPubMed
Grossman, A. R.Lohr, M.Im, C. S. 2004 in the landscape of pigmentsAnnu. Rev. Genet 38 119CrossRefGoogle ScholarPubMed
Grünewald, K.Hagen, C. 2001 β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoids in J. Appl. Phycol 13 89CrossRefGoogle Scholar
Grünewald, K.Hirschberg, J.Hagen, C. 2001 Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga J. Biol. Chem 276 6023CrossRefGoogle ScholarPubMed
Grung, M.Liaaen-Jensen, S. 1993 Algal carotenoids 52; Secondary carotenoids of algae 3; Carotenoids in a natural bloom of Biochem. Syst. Ecol 21 757CrossRefGoogle Scholar
Guevara-García, A.San Román, C.Arroyo, A.Cortés, M. E.Gutíerrez-Nava, M. D.León, P. 2005 Characterization of the mutant illustrates the importance of posttranscriptional regulation of the methyl--erythritol 4-phosphate pathwayPlant Cell 17 628CrossRefGoogle Scholar
Guillou, L.Chrétiennot-Dinet, M. J.Medlin, L. K.Claustre, H.Loiseaux-de Goër, S.Vaulot, D. 1999 : A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta)J. Phycol 35 368CrossRefGoogle Scholar
Hager, A.Stransky, H. 1970 The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. III. Green algaeArch. Mikrobiol 72 68CrossRefGoogle Scholar
Hager, A.Stransky, H. 1970 The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. V. A few members of Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae and PhaeophyceaeArch. Mikrobiol 73 77CrossRefGoogle Scholar
Harris, S. D. 2008 Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systemsMycologia 100 823CrossRefGoogle ScholarPubMed
Heelis, D. V.Kernick, W.Phillips, G. O.Davies, K. 1979 Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of strain ZArch. Microbiol 121 207CrossRefGoogle ScholarPubMed
Hegemann, P. 2008 Algal sensory photoreceptorsAnnu. Rev. Plant Biol 59 167CrossRefGoogle ScholarPubMed
Hess, W. R.Rocap, G.Ting, C. S.Larimer, F.Stilwagen, S.Lamerdin, J.Chisholm, S. W. 2001 The photosynthetic apparatus of : Insights through comparative genomicsPhotosynth. Res 70 53CrossRefGoogle ScholarPubMed
Hill, R. E.Sayer, B. G.Spenser, I. D. 1989 Biosynthesis of vitamin B6: incorporation of D-1-deoxyxyluloseJ. Am. Chem. Soc 111 1916CrossRefGoogle Scholar
Hirsch, R.Hartung, W.Gimmler, H. 1989 Abscisic acid content of algae under stressBot. Acta 102 326CrossRefGoogle Scholar
Hirschberg, J. 1998 Molecular biology of carotenoid biosynthesisCarotenoids, vol. 3, Biosynthesis and MetabolismBritton, G.Liaaen-Jensen, S.Pfander, H.BaselBirkhäuser149Google Scholar
Hirschberg, J. 2001 Carotenoid biosynthesis in flowering plantsCurr. Opin. Plant Biol 4 210CrossRefGoogle ScholarPubMed
Hirschberg, J.Cohen, M.Harker, M.Lotan, T.Mann, V.Pecker, I. 1997 Molecular genetics of the carotenoid biosynthesis pathway in plants and algaePure Appl. Chem 69 2151CrossRefGoogle Scholar
Huang, F. C.Horvath, G.Molnar, P.Turcsi, E.Deli, J.Schrader, J.Sandmann, G.Schmidt, H.Schwab, W. 2009 Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Phytochemistry 70 457CrossRefGoogle Scholar
Huang, J. L.Gogarten, J. P. 2007 Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?Genome Biol 8 R99CrossRefGoogle ScholarPubMed
Huang, J. C.Chen, F.Sandmann, G. 2006 Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga J. Biotechnol 122 176CrossRefGoogle ScholarPubMed
Huang, J. C.Wang, Y.Sandmann, G.Chen, F. 2006 Isolation and characterization of a carotenoid oxygenase gene from (Chlorophyta)Appl. Microbiol. Biotechnol 71 473CrossRefGoogle Scholar
Humphrey, A. J.Beale, M. H. 2006 Strigol: Biogenesis and physiological activityPhytochemistry 67 636CrossRefGoogle ScholarPubMed
Hunter, W. N. 2007 The non-mevalonate pathway of isoprenoid precursor biosynthesisJ. Biol. Chem 282 21573CrossRefGoogle ScholarPubMed
Ilg, A.Beyer, P.Al-Babili, S. 2009 Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesisFEBS J 276 736CrossRefGoogle ScholarPubMed
Inaba, T.Schnell, D. J. 2008 Protein trafficking to plastids: one theme, many variationsBiochem. J 413 15CrossRefGoogle ScholarPubMed
Isaacson, T.Ronen, G.Zamir, D.Hirschberg, J. 2002 Cloning of from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plantsPlant Cell 14 333CrossRefGoogle ScholarPubMed
Isaacson, T.Ohad, I.Beyer, P.Hirschberg, J. 2004 Analysis of the enzyme CRTISO establishes a poly--carotenoid biosynthesis pathway in plantsPlant Physiol 136 4246CrossRefGoogle ScholarPubMed
Iwai, M.Maoka, T.Ikeuchi, M.Takaichi, S. 2008 2,2′-β-Hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2′-fucoside in strain BP-1Plant Cell Physiol 49 1678CrossRefGoogle ScholarPubMed
Jeffrey, S. W.Mantoura, R. F. C.Wright, S. W. 1997 Phytoplankton Pigments in Oceanography: Guidelines to Modern MethodsParisUNESCO PublishingGoogle Scholar
Jin, E.Lee, C. G.Polle, J. E. W. 2006 Secondary carotenoid accumulation in (Chlorophyceae): Biosynthesis, regulation, and biotechnologyJ. Microbiol. Biotechnol 16 821Google Scholar
Jirásková, D.Poulíčková, A.Novák, O.Sedláková, K.Hradecká, V.Strnad, M. 2009 High-throughput screening technology for monitoring phytohormone production in microalgaeJ. Phycol 45 108CrossRefGoogle ScholarPubMed
Johansen, J. E.Svec, W. A.Liaaen-Jensen, S.Haxo, F. T. 1974 Algal carotenoids. X. Carotenoids of the DinophyceaePhytochemistry 13 2261CrossRefGoogle Scholar
Julliard, J.Douce, R. 1991 Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplastsProc. Natl. Acad. Sci. USA 88 2042CrossRefGoogle Scholar
Jung, K. H.Trivedi, V. D.Spudich, J. L. 2003 Demonstration of a sensory rhodopsin in eubacteriaMol. Microbiol 47 1513CrossRefGoogle ScholarPubMed
Jüttner, F. 1984 Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lakeAppl. Environ. Microbiol 47 814Google Scholar
Jüttner, F. 1995 Physiology and biochemistry of odorous compounds from fresh-water cyanobacteria and algaeWater Sci. Technol 31 69CrossRefGoogle Scholar
Jüttner, F.Hoflacher, B.Wurster, K. 1986 Seasonal analysis of volatile organic biogenic substances (VOBS) in fresh-water phytoplankton populations dominated by , and J. Phycol 22 169CrossRefGoogle Scholar
Kajiwara, S.Kakizono, T.Saito, T.Kondo, K.Ohtani, T.Nishio, N.Nagai, S.Misawa, N. 1995 Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from , and astaxanthin synthesis in Plant Mol. Biol 29 343CrossRefGoogle ScholarPubMed
Kateriya, S.Nagel, G.Barnberg, E.Hegemann, P. 2004 ‘Vision’ in single-celled algaeNews Physiol. Sci 19 133Google ScholarPubMed
Kentzer, T.Mazur, H. 1991 Abscisic acid as endogenous inhibitor of the marine diatom Acta Physiol. Plant 13 153Google Scholar
Kim, D.Filtz, M. R.Proteau, P. J. 2004 The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in J. Nat. Prod 67 1067CrossRefGoogle ScholarPubMed
Kim, J.DellaPenna, D. 2006 Defining the primary route for lutein synthesis in plants: The role of carotenoid β-ring hydroxylase CYP97A3Proc. Natl. Acad. Sci. USA 103 3474CrossRefGoogle ScholarPubMed
Kim, J.Smith, J. J.Tian, L.DellaPenna, D. 2009 The evolution and function of carotenoid hydroxylases in Plant Cell Physiol 50 463CrossRefGoogle Scholar
Kirilovsky, D. 2007 Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanismPhotosynth. Res 93 7CrossRefGoogle ScholarPubMed
Kloer, D. P.Schulz, G. E. 2006 Structural and biological aspects of carotenoid cleavageCell. Mol. Life Sci 63 2291CrossRefGoogle ScholarPubMed
Kobayashi, M.Hirai, N.Kurimura, Y.Ohigashi, H.Tsuji, Y. 1997 Abscisic acid-dependent algal morphogenesis in the unicellular green alga Plant Growth Regul 22 79CrossRefGoogle Scholar
Kuntz, M. 2004 Plastid terminal oxidase and its biological significancePlanta 218 896CrossRefGoogle ScholarPubMed
Kuntz, M.Römer, S.Suire, C.Hugueney, P.Weil, J. H.Schantz, R.Camara, B. 1992 Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from : correlative increase in enzyme activity and transcript level during fruit ripeningPlant J 2 25Google ScholarPubMed
Lagarde, D.Vermaas, W. 1999 The zeaxanthin biosynthesis enzyme β-carotene hydroxylase is involved in myxoxanthophyll synthesis in sp. PCC 6803FEBS Lett 454 247Google ScholarPubMed
Lange, B. M.Ghassemian, M. 2003 Genome organization in : a survey for genes involved in isoprenoid and chlorophyll metabolismPlant Mol. Biol 51 925CrossRefGoogle ScholarPubMed
Lange, B. M.Rujan, T.Martin, W.Croteau, R. 2000 Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomesProc. Natl. Acad. Sci. USA 97 13172CrossRefGoogle ScholarPubMed
Laule, O.Fürholz, A.Chang, H. S.Zhu, T.Wang, X.Heifetz, P. B.Gruissem, W.Lange, B. M. 2003 Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Proc. Natl. Acad. Sci. USA 100 6866CrossRefGoogle Scholar
Lavaud, J. 2007 Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiologyFunct. Plant Sci. Biotechnol 1 267Google Scholar
Leung, J.Giraudat, J. 1998 Abscisic acid signal transductionAnnu. Rev. Plant Physiol. Plant Mol. Biol 49 199CrossRefGoogle ScholarPubMed
Leyser, O. 2009 The control of shoot branching: an example of plant information processingPlant Cell Environ 32 694CrossRefGoogle ScholarPubMed
Li, F.Murillo, C.Wurtzel, E. T. 2007 Maize encodes a product essential for 15--ζ-carotene isomerizationPlant Physiol 144 1181CrossRefGoogle ScholarPubMed
Li, Z. R.Ahn, T. K.Avenson, T. J.Ballottari, M.Cruz, J. A.Kramer, D. M.Bassi, R.Fleming, G. R.Keasling, J. D.Niyogi, K. K. 2009 Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the mutantPlant Cell 21 1798CrossRefGoogle ScholarPubMed
Lichtenthaler, H. K. 1999 The 1-deoxy--xylulose 5-phosphate pathway of isoprenoid biosynthesis in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol 50 47CrossRefGoogle Scholar
Linden, H. 1999 Carotenoid hydroxylase from : cDNA sequence, regulation and functional complementationBiochim. Biophys. Acta 1446 203CrossRefGoogle ScholarPubMed
Linden, H.Misawa, N.Chamovitz, D.Pecker, I.Hirschberg, J.Sandmann, G. 1991 Functional complementation in of different phytoene desaturase genes and analysis of accumulated carotenesZ. Naturforsch. C 46 1045Google ScholarPubMed
Lohr, M. 2001 Beziehungen zwischen den Xanthophyllzyklen und der Biosynthese von Lichtsammelxanthophyllen in Chlorophyll a/c-haltigen AlgenJohannes Gutenberg-Universität, MainzGermanyGoogle Scholar
Lohr, M. 2009 CarotenoidsThe Chlamydomonas Sourcebook, vol. 2: Organellar and Metabolic ProcessesStern, D.AmsterdamAcademic Press799CrossRefGoogle Scholar
Lohr, M.Wilhelm, C. 1999 Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycleProc. Natl. Acad. Sci. USA 96 8784CrossRefGoogle ScholarPubMed
Lohr, M.Wilhelm, C. 2001 Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a modelPlanta 212 382CrossRefGoogle ScholarPubMed
Lohr, M.Im, C. S.Grossman, A. R. 2005 Genome-based examination of chlorophyll and carotenoid biosynthesis in Plant Physiol 138 490CrossRefGoogle Scholar
Lotan, T.Hirschberg, J. 1995 Cloning and expression in of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in FEBS Lett 364 125Google Scholar
Lubián, L. M.Montero, O.Moreno-Garrido, I.Huertas, I. E.Sobrino, C.González-del Valle, M.Parés, G. 2000 (Eustigmatophyceae) as source of commercially valuable pigmentsJ. Appl. Phycol 12 249CrossRefGoogle Scholar
Makino, T.Harada, H.Ikenaga, H.Matsuda, S.Takaichi, S.Shindo, K.Sandmann, G.Ogata, T.Misawa, N. 2008 Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Plant Cell Physiol 49 1867CrossRefGoogle ScholarPubMed
Marasco, E. K.Vay, K.Schmidt-Dannert, C. 2006 Identification of carotenoid cleavage dioxygenases from sp. PCC 7120 with different cleavage activitiesJ. Biol. Chem 281 31583CrossRefGoogle ScholarPubMed
Maresca, J. A.Graham, J. E.Wu, M.Eisen, J. A.Bryant, D. A. 2007 Identification of a fourth family of lycopene cyclases in photosynthetic bacteriaProc. Natl. Acad. Sci. USA 104 11784CrossRefGoogle ScholarPubMed
Maresca, J. A.Graham, J. E.Bryant, D. A. 2008 The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteriaPhotosynth. Res 97 121CrossRefGoogle ScholarPubMed
Marin, E.Nussaume, L.Quesada, A.Gonneau, M.Sotta, B.Hugueney, P.Frey, A.Marion-Poll, A. 1996 Molecular identification of zeaxanthin epoxidase of , a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Embo J 15 2331Google ScholarPubMed
Marquardt, J.Hanelt, D. 2004 Carotenoid composition of and other marine red algae from polar and temperate habitatsEur. J. Phycol 39 285CrossRefGoogle Scholar
Maršálek, B.Zahradníčková, H.Hronková, M. 1992 Extracellular abscisic acid produced by cyanobacteria under salt stressJ. Plant Physiol 139 506CrossRefGoogle Scholar
Masamoto, K.Misawa, N.Kaneko, T.Kikuno, R.Toh, H. 1998 β-carotene hydroxylase gene from the cyanobacterium sp. PCC6803Plant Cell Physiol 39 560CrossRefGoogle ScholarPubMed
Masamoto, K.Wada, H.Kaneko, T.Takaichi, S. 2001 Identification of a gene required for -to- carotene isomerization in carotenogenesis of the cyanobacterium sp. PCC 6803Plant Cell Physiol 42 1398CrossRefGoogle ScholarPubMed
Matsubara, S.Morosinotto, T.Bassi, R.Christian, A. L.Fischer-Schliebs, E.Lüttge, U.Orthen, B.Franco, A. C.Scarano, F. R.Förster, B.Pogson, B. J.Osmond, C. B. 2003 Occurrence of the lutein-epoxide cycle in mistletoes of the Loranthaceae and ViscaceaePlanta 217 868CrossRefGoogle ScholarPubMed
Matthews, P. D.Luo, R. B.Wurtzel, E. T. 2003 Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly- desaturation pathway: implications for genetic engineering of carotenoid content among cereal cropsJ. Exp. Bot 54 2215CrossRefGoogle ScholarPubMed
McGraw, K. J.Nolan, P. M.Crino, O. L. 2006 Carotenoid accumulation strategies for becoming a colourful House Finch: analyses of plasma and liver pigments in wild moulting birdsFunct. Ecol 20 678CrossRefGoogle Scholar
Milborrow, B. V. 1982 Stereochemical aspects of carotenoid biosynthesisCarotenoid Chemistry and BiochemistryBritton, G., G.Goodwin, T -W.OxfordPergamon Press279CrossRefGoogle Scholar
Misawa, N.Truesdale, M. R.Sandmann, G.Fraser, P. D.Bird, C.Schuch, W.Bramley, P. M. 1994 Expression of a tomato cDNA coding for phytoene synthase in , phytoene formation and , and functional analysis of the various truncated gene productsJ. Biochem 116 980CrossRefGoogle Scholar
Misawa, N.Satomi, Y.Kondo, K.Yokoyama, A.Kajiwara, S.Saito, T.Ohtani, T.Miki, W. 1995 Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene levelJ. Bacteriol 177 6575CrossRefGoogle ScholarPubMed
Mochimaru, M.Masukawa, H.Takaichi, S. 2005 The cyanobacterium sp. PCC 7120 has two distinct β-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesisFEBS Lett 579 6111CrossRefGoogle ScholarPubMed
Mochimaru, M.Masukawa, H.Maoka, T.Mohamed, H. E.Vermaas, W. F. J.Takaichi, S. 2008 Substrate specificities and availability of fucosyltransferase and β-carotene hydroxylase for myxol 2′-fucoside synthesis in sp. strain PCC 7120 compared with sp. strain PCC 6803J. Bacteriol 190 6726CrossRefGoogle ScholarPubMed
Mohamed, H. E.Vermaas, W. F. J. 2006 Sll0254 (CrtLdiox) is a bifunctional lycopene cyclase/dioxygenase in cyanobacteria producing myxoxanthophyllJ. Bacteriol 188 3337CrossRefGoogle Scholar
Moustafa, A.Reyes-Prieto, A.Bhattacharya, D. 2008 Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functionsPLoS ONE 3 e2205CrossRefGoogle ScholarPubMed
Müller, P.Li, X. P.Niyogi, K. K. 2001 Non-photochemical quenching. A response to excess light energyPlant Physiol 125 1558CrossRefGoogle ScholarPubMed
Nambara, E.Marion-Poll, A. 2005 Abscisic acid biosynthesis and catabolismAnnu. Rev. Plant Biol 56 165CrossRefGoogle ScholarPubMed
Nelson, D. R. 2006 Plant cytochrome P450s from moss to poplarPhytochem. Rev 5 193CrossRefGoogle Scholar
Nikulina, K.Chunaev, A. S.Boschetti, A. 1999 Accumulation of ζ-carotene in under control of the nuclear genePlant Cell Rep 19 37CrossRefGoogle Scholar
Nimura, K.Mizuta, H. 2002 Inducible effects of abscisic acid on sporophyte discs from Areschoug (Laminariales, Phaeophyceae)J. Appl. Phycol 14 159CrossRefGoogle Scholar
Nishida, Y.Adachi, K.Kasai, H.Shizuri, Y.Shindo, K.Sawabe, A.Komemushi, S.Miki, W.Misawa, N. 2005 Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophyllsAppl. Environ. Microbiol 71 4286CrossRefGoogle ScholarPubMed
Norris, S. R.Barrette, T. R.DellaPenna, D. 1995 Genetic dissection of carotenoid synthesis in defines plastoquinone as an essential component of phytoene desaturationPlant Cell 7 2139CrossRefGoogle ScholarPubMed
North, H. M.De Almeida, A.Boutin, J. P.Frey, A.To, A.Botran, L.Sotta, B.Marion-Poll, A. 2007 The Arabidopsis ABA-deficient mutant demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomersPlant J 50 810CrossRefGoogle ScholarPubMed
Park, H.Kreunen, S. S.Cuttriss, A. J.DellaPenna, D.Pogson, B. J. 2002 Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesisPlant Cell 14 321CrossRefGoogle ScholarPubMed
Parniske, M. 2008 Arbuscular mycorrhiza: the mother of plant root endosymbiosesNat. Rev. Microbiol 6 763CrossRefGoogle Scholar
Pecker, I.Chamovitz, D.Linden, H.Sandmann, G.Hirschberg, J. 1992 A single polypeptide catalyzing the conversion of phytoene to ζ-carotene is transcriptionally regulated during tomato fruit ripeningProc. Natl. Acad. Sci. USA 89 4962CrossRefGoogle ScholarPubMed
Phillips, M. A.León, P.Boronat, A.Rodríguez-Concepción, M. 2008 The plastidial MEP pathway: unified nomenclature and resourcesTrends Plant Sci 13 619CrossRefGoogle ScholarPubMed
Prado-Cabrero, A.Scherzinger, D.Avalos, J.Al-Babili, S. 2007 Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Eukaryot. Cell 6 650CrossRefGoogle Scholar
Punginelli, C.Wilson, A.Routaboul, J. M.Kirilovsky, D. 2009 Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid ProteinBiochim. Biophys. Acta 1787 280CrossRefGoogle ScholarPubMed
Quinlan, R. F.Jaradat, T. T.Wurtzel, E. T. 2007 as a platform for functional expression of plant P450 carotene hydroxylasesArch. Biochem. Biophys 458 146CrossRefGoogle ScholarPubMed
Rmiki, N. E.Brunet, C.Cabioch, J.Lemoine, Y. 1996 Xanthophyll cycle and photosynthetic adaptation to environment in macro- and microalgaeHydrobiologia 327 407CrossRefGoogle Scholar
Rodríguez-Concepción, M.Boronat, A. 2002 Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomicsPlant Physiol 130 1079CrossRefGoogle ScholarPubMed
Rohdich, F.Hecht, S.Gartner, K.Adam, P.Krieger, C.Amslinger, S.Arigoni, D.Bacher, A.Eisenreich, W. 2002 Studies on the nonmevalonate terpene biosynthetic pathway: Metabolic role of IspH (LytB) proteinProc. Natl. Acad. Sci. USA 99 1158CrossRefGoogle ScholarPubMed
Ronen, G.Carmel-Goren, L.Zamir, D.Hirschberg, J. 2000 An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of and color mutations in tomatoProc. Natl. Acad. Sci. USA 97 11102CrossRefGoogle ScholarPubMed
Rubio, A.Rambla, J. L.Santaella, M.Gómez, M. D.Orzaez, D.Granell, A.Gómez-Gómez, L. 2008 Cytosolic and plastoglobule-targeted carotenoid dioxygenases from are both involved in β-ionone releaseJ. Biol. Chem 283 24816CrossRefGoogle ScholarPubMed
Ruch, S.Beyer, P.Ernst, H.Al-Babili, S. 2005 Retinal biosynthesis in Eubacteria: characterization of a novel carotenoid oxygenase from sp. PCC 6803Mol. Microbiol 55 1015CrossRefGoogle ScholarPubMed
Ruiz-González, M. X.Marín, I. 2004 New insights into the evolutionary history of type 1 rhodopsinsJ. Mol. Evol 58 348CrossRefGoogle ScholarPubMed
Sandmann, G. 1994 Carotenoid biosynthesis in microorganisms and plantsEur. J. Biochem 223 7CrossRefGoogle ScholarPubMed
Sandmann, G. 2002 Molecular evolution of carotenoid biosynthesis from bacteria to plantsPhysiol. Plant 116 431CrossRefGoogle Scholar
Sandmann, G. 2009 Evolution of carotene desaturation: The complication of a simple pathwayArch. Biochem. Biophys 483 169CrossRefGoogle ScholarPubMed
Saradhi, P. P.Suzuki, I.Katoh, A.Sakamoto, A.Sharmila, P.Shi, D. J.Murata, N. 2000 Protection against the photo-induced inactivation of the photosystem II complex by abscisic acidPlant Cell Environ 23 711CrossRefGoogle Scholar
Saranak, J.Foster, K. W. 1994 The cleavage of carotenoids into retinoids in J. Exp. Bot 45 505CrossRefGoogle Scholar
Saranak, J.Foster, K. W. 2005 Photoreceptor for curling behavior in and evolution of eukaryotic rhodopsinsEukaryot. Cell 4 1605CrossRefGoogle ScholarPubMed
Scaife, M. A.Burja, A. M.Wright, P. C. 2009 Characterization of cyanobacterial β-carotene ketolase and hydroxylase genes in , and their application for astaxanthin biosynthesisBiotechnol. Bioeng 103 944CrossRefGoogle ScholarPubMed
Schaffelke, B. 1995 Abscisic acid in sporophytes of three species (Phaeophyta)J. Plant Physiol 146 453CrossRefGoogle Scholar
Schagerl, M.Pichler, C.Donabaum, K. 2003 Patterns of major photosynthetic pigments in freshwater algae. 2. Dinophyta, Euglenophyta, Chlorophyceae and CharalesAnn. Limnol. – Int. J. Lim 29 49CrossRefGoogle Scholar
Scherzinger, D.Al-Babili, S. 2008 characterization of a carotenoid cleavage dioxygenase from sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlightMol. Microbiol 69 231CrossRefGoogle ScholarPubMed
Scherzinger, D.Ruch, S.Kloer, D. P.Wilde, A.Al-Babili, S. 2006 Retinal is formed from apo-carotenoids in sp. PCC7120: characterization of an apo-carotenoid oxygenaseBiochem. J 398 361CrossRefGoogle ScholarPubMed
Schmidt, M.Gessner, G.Matthias, L.Heiland, I.Wagner, V.Kaminski, M.Geimer, S.Eitzinger, N.Reissenweber, T.Voytsekh, O.Fiedler, M.Mittag, M.Kreimer, G. 2006 Proteomic analysis of the eyespot of provides novel insights into its components and tactic movementsPlant Cell 18 1908CrossRefGoogle ScholarPubMed
Schoefs, B.Rmiki, N. E.Rachadi, J.Lemoine, Y. 2001 Astaxanthin accumulation in requires a cytochrome P450 hydroxylase and an active synthesis of fatty acidsFEBS Lett 500 125CrossRefGoogle ScholarPubMed
Schubert, N.García-Mendoza, E. 2008 Photoinhibition in red algal species with different carotenoid profilesJ. Phycol 44 1437CrossRefGoogle ScholarPubMed
Schubert, N.García-Mendoza, E.Pacheco-Ruiz, I. 2006 Carotenoid composition of marine red algaeJ. Phycol 42 1208CrossRefGoogle Scholar
Schwartz, S. H.Qin, X. Q.Loewen, M. C. 2004 The biochemical characterization of two carotenoid cleavage enzymes from indicates that a carotenoid-derived compound inhibits lateral branchingJ. Biol. Chem 279 46940CrossRefGoogle ScholarPubMed
Schwartz, S. H.Tan, B. C.Gage, D. A.Zeevaart, J. A. D.McCarty, D. R. 1997 Specific oxidative cleavage of carotenoids by VP14 of maizeScience 276 1872CrossRefGoogle ScholarPubMed
Seemann, M.Wegner, P.Schünemann, V.Bui, B. T. S.Wolff, M.Marquet, A.Trautwein, A. X.Rohmer, M. 2005 Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the ()-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from is a [4Fe-4S] proteinJ. Biol. Inorg. Chem 10 131CrossRefGoogle Scholar
Seemann, M.Bui, B. T. S.Wolff, M.Miginlac-Maslow, M.Rohmer, M. 2006 Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspGFEBS Lett 580 1547CrossRefGoogle ScholarPubMed
Shahbazi, M.Gilbert, M.Laboure, A. M.Kuntz, M. 2007 Dual role of the plastid terminal oxidase in tomatoPlant Physiol 145 691CrossRefGoogle ScholarPubMed
Simkin, A. J.Schwartz, S. H.Auldridge, M.Taylor, M. G.Klee, H. J. 2004 The tomato genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetonePlant J 40 882CrossRefGoogle ScholarPubMed
Sineshchekov, O. A.Govorunova, E. G.Jung, K. H.Zauner, S.Maier, U. G.Spudich, J. L. 2005 Rhodopsin-mediated photoreception in cryptophyte flagellatesBiophys. J 89 4310CrossRefGoogle ScholarPubMed
Spudich, J. L.Yang, C. S.Jung, K. H.Spudich, E. N. 2000 Retinylidene proteins: Structures and functions from archaea to humansAnnu. Rev. Cell Dev. Biol 16 365CrossRefGoogle Scholar
Steiger, S.Sandmann, G. 2004 Cloning of two carotenoid ketolase genes from for the heterologous production of canthaxanthin and astaxanthinBiotechnol. Lett 26 813CrossRefGoogle ScholarPubMed
Steiger, S.Jackisch, Y.Sandmann, G. 2005 Carotenoid biosynthesis in PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymesArch. Microbiol 184 207CrossRefGoogle ScholarPubMed
Steinbacher, S.Kaiser, J.Gerhardt, S.Eisenreich, W.Huber, R.Bacher, A.Rohdich, F. 2003 Crystal structure of the type II isopentenyl diphosphate: dimethylallyl diphosphate isomerase from J. Mol. Biol 329 973CrossRefGoogle Scholar
Stickforth, P.Steiger, S.Hess, W. R.Sandmann, G. 2003 A novel type of lycopene ε-cyclase in the marine cyanobacterium MED4Arch. Microbiol 179 409CrossRefGoogle ScholarPubMed
Stirk, W. A.Novák, O.Hradecká, V.Pĕnčík, A.Rolčík, J.Strnad, M.Van Staden, J. 2009 Endogenous cytokinins, auxins and abscisic acid in (Chlorophyta) and (Phaeophyta): towards understanding their biosynthesis and homoeostasisEur. J. Phycol 44 231CrossRefGoogle Scholar
Stolte, W.Kraay, G. W.Noordeloos, A. A. M.Riegman, R. 2000 Genetic and physiological variation in pigment composition of (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological markerJ. Phycol 36 529CrossRefGoogle ScholarPubMed
Stransky, H.Hager, A. 1970 The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. II. XanthophyceaeArch. Mikrobiol 71 164CrossRefGoogle Scholar
Stransky, H.Hager, A. 1970 The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. IV. Cyanophyceae and RhodophyceaeArch. Mikrobiol 72 84CrossRefGoogle ScholarPubMed
Sun, Z. R.Gantt, E.Cunningham, F. X. 1996 Cloning and functional analysis of the β-carotene hydroxylase of J. Biol. Chem 271 24349CrossRefGoogle Scholar
Swift, I. E.Milborrow, B. V.Jeffrey, S. W. 1980 Formation of neoxanthin, diadinoxanthin and peridinin from [14C]zeaxanthin by a cell-free system from Phytochemistry 21 2859CrossRefGoogle Scholar
Takaichi, S.Mimuro, M. 1998 Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-, a sole molecular formPlant Cell Physiol 39 968CrossRefGoogle Scholar
Takaichi, S.Mochimaru, M. 2007 Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosidesCell. Mol. Life Sci 64 2607CrossRefGoogle ScholarPubMed
Takano, H.Asker, D.Beppu, T.Ueda, K. 2006 Genetic control for light-induced carotenoid production in non-phototrophic bacteriaJ. Ind. Microbiol. Biotechnol 33 88CrossRefGoogle ScholarPubMed
Tan, B. C.Joseph, L. M.Deng, W. T.Liu, L. J.Li, Q. B.Cline, K.McCarty, D. R. 2003 Molecular characterization of the 9- epoxycarotenoid dioxygenase gene familyPlant J 35 44CrossRefGoogle ScholarPubMed
Tao, L.Cheng, Q. 2004 Novel β-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesisMol. Genet. Genomics 272 530CrossRefGoogle ScholarPubMed
Tao, L.Rouvière, P. E.Cheng, Q. O. 2006 A carotenoid synthesis gene cluster from a non-marine that synthesizes hydroxylated astaxanthinGene 379 101CrossRefGoogle ScholarPubMed
Taylor, I. B.Sonneveld, T.Bugg, T. D. H.Thompson, A. J. 2005 Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursorsJ. Plant Growth Regul 24 253Google Scholar
Tian, L.DellaPenna, D. 2004 Progress in understanding the origin and functions of carotenoid hydroxylases in plantsArch. Biochem. Biophys 430 22CrossRefGoogle ScholarPubMed
Tian, L.Musetti, V.Kim, J.Magallanes-Lundback, M.DellaPenna, D. 2004 The locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activityProc. Natl. Acad. Sci. USA 101 402CrossRefGoogle ScholarPubMed
Tietz, A.Ruttkowski, U.Koehler, R.Kasprik, W. 1989 Further investigations on the occurrence and the effects of abscisic acid in algaeBiochem. Physiol. Pflanzen 184 259CrossRefGoogle Scholar
Tsuchiya, T.Takaichi, S.Misawa, N.Maoka, T.Miyashita, H.Mimuro, M. 2005 The cyanobacterium PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesisFEBS Lett 579 2125CrossRefGoogle ScholarPubMed
Umehara, M.Hanada, A.Yoshida, S.Akiyama, K.Arite, T.Takeda-Kamiya, N.Magome, H.Kamiya, Y.Shirasu, K.Yoneyama, K.Kyozuka, J.Yamaguchi, S. 2008 Inhibition of shoot branching by new terpenoid plant hormonesNature 455 195CrossRefGoogle ScholarPubMed
Vogel, J. T.Tan, B. C.McCarty, D. R.Klee, H. J. 2008 The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positionsJ. Biol. Chem 283 11364CrossRefGoogle ScholarPubMed
von Lintig, J.Hessel, S.Isken, A.Kiefer, C.Lampert, J. M.Voolstra, O.Vogt, K. 2005 Towards a better understanding of carotenoid metabolism in animalsBiochim. Biophys. Acta 1740 122CrossRefGoogle ScholarPubMed
Wasilewska, A.Vlad, F.Sirichandra, C.Redko, Y.Jammes, F.Valon, C.Frey, N. F. D.Leung, J. 2008 An update on abscisic acid signaling in plants and moreMol. Plant 1 198CrossRefGoogle ScholarPubMed
Watson, S. B. 2003 Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activityPhycologia 42 332CrossRefGoogle Scholar
Wilhelm, C. 1990 The biochemistry and physiology of light-harvesting processes in chlorophyll -containing and chlorophyll -containing algaePlant Physiol. Biochem 28 293Google Scholar
Wilhelm, C.Büchel, C.Fisahn, J.Goss, R.Jakob, T.LaRoche, J.Lavaud, J.Lohr, M.Riebesell, U.Stehfest, K.Valentin, K.Kroth, P. G. 2006 The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algaeProtist 157 91CrossRefGoogle ScholarPubMed
Wilson, A.Punginelli, C.Gall, A.Bonetti, C.Alexandre, M.Routaboul, J. -M.Kerfeld, C. A.van Grondelle, R.Robert, B.Kennis, J. T. M.Kirilovsky, D. 2008 A photoactive carotenoid protein acting as light intensity sensorProc. Natl. Acad. Sci. USA 105 12075CrossRefGoogle ScholarPubMed
Withers, N. W.Haxo, F. T. 1978 Isolation and characterization of carotenoid-rich lipid globules from Plant Physiol 62 36CrossRefGoogle Scholar
Wolff, M.Seemann, M.Bui, B. T. S.Frapart, Y.Tritsch, D.Estrabot, A. G.Rodríguez-Concepción, M.Boronat, A.Marquet, A.Rohmer, M. 2003 Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the ()-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from is a [4Fe-4S] proteinFEBS Lett 541 115CrossRefGoogle Scholar
Yang, S.Wu, R. S. S.Mok, H. O. L.Zhang, Z. P.Kong, R. Y. C. 2003 Identification of a novel cytochrome P450 cDNA, CYP97E1, from the marine diatom BacillariophyceaeJ. Phycol 39 555CrossRefGoogle Scholar
Yoneyama, K.Xie, X.Yoneyama, K.Takeuchi, Y. 2009 Strigolactones: structures and biological activitiesPest Manag. Sci 65 467CrossRefGoogle ScholarPubMed
Yoshida, K.Igarashi, E.Mukai, M.Hirata, K.Miyamoto, K. 2003 Induction of tolerance to oxidative stress in the green alga, , by abscisic acidPlant Cell Environ 26 451CrossRefGoogle Scholar
Yoshida, K.Igarashi, E.Wakatsuki, E.Miyamoto, K.Hirata, K. 2004 Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Plant Sci 167 1335CrossRefGoogle Scholar
Yoshii, Y. 2006 Diversity and evolution of photosynthetic antenna systems in green plantsPhycol. Res 54 220CrossRefGoogle Scholar
Yoshii, Y.Takaichi, S.Maoka, T.Suda, S.Sekiguchi, H.Nakayama, T.Inouye, I. 2005 Variation of siphonaxanthin series among the genus (Prasinophyceae, Chlorophyta), including a novel primary methoxy carotenoidJ. Phycol 41 827CrossRefGoogle Scholar
Zahradníčková, H.Maršálek, B.Polišenská, M. 1991 High-performance thin-layer chromatographic and high-performance liquid chromatographic determination of abscisic acid produced by cyanobacteriaJ. Chromatogr 555 239CrossRefGoogle Scholar
Zapata, M. 2005 Recent advances in pigment analysis as applied to picophytoplanktonVie et Milieu 55 233Google Scholar
Zapata, M.Jeffrey, S. W.Wright, S. W.Rodríguez, F.Garrido, J. L.Clementson, L. 2004 Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomyMar. Ecol. Prog. Ser 270 83CrossRefGoogle Scholar
Zhua, C. F.Yamamura, S.Nishihara, M.Koiwa, H.Sandmann, G. 2003 cDNAs for the synthesis of cyclic carotenoids in petals of and their regulation during flower developmentBiochim. Biophys. Acta 1625 305CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×