Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T22:31:48.105Z Has data issue: false hasContentIssue false

Appendix D - Leptonic and Hadronic Tensors

Published online by Cambridge University Press:  22 May 2020

M. Sajjad Athar
Affiliation:
Aligarh Muslim University, India
S. K. Singh
Affiliation:
Aligarh Muslim University, India
Get access

Summary

Contraction of Leptonic Tensors in ElectromagneticInteractions

For the scattering discussed in Chapter 9, the transition matrix elementsquared is written as

where is the momentum transfer and the factor of is for the averaging overthe initial electron and muon spins.

The leptonic current is given by

In Eq. (D.2),

  • • Adjoint Dirac spinor is a 1 × 4matrix,

  • • Dirac spinor (u) is a 4× 1 matrix,

  • γμ is a 4× 4 matrix,

  • • Ultimately, we have (1 × 4)(4× 4)(4 × 1) =A, a number,

  • • For any number A, the complex conjugate andthe Hermitian conjugate are the same thing.

Therefore, instead of, we may write

we can rewrite the aforementioned expression in the component form for anelectronic tensor as:

where we have used the trace properties,

The trace of an odd number of gamma matrices is zero. Similarly,

Using Eqs. (D.3) and (D.4), we get

Contraction of Leptonic Tensors in the Case of Weak Interactions

For the scattering discussed in Chapter 9, where the interaction is mediatedby a W boson, the transition matrix element squared is expressed as

where the factor of is for the averaging over the initial muon spin.

Leptonic tensor,

Therefore,

We can rewrite this expression in the component form as:

Similarly, for the muonic tensor,

Using Eqs (D.8) and (D.9), the transition matrix element squared is obtainedas

Contraction of Weak Leptonic Tensor with Hadronic Tensor

Contracting the various terms of hadronic tensor with the leptonic tensor, weget

Where

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×