Published online by Cambridge University Press: 24 May 2020
In this chapter, we discuss how to build effective many-body models starting from first principles electronic structure calculations and apply this general approach to graphene. We present quantitative results for the Fermi velocity renormalization, which were preliminary announced in Chapter 8. After that, we discuss many-body effects in graphene electron spectrum, static screening, and optical conductivity based on the results of lattice quantum Monte Carlo simulations. At the end, we consider many-body renormalization of minimal conductivity in graphene within the concept of environment-induced suppression of quantum tunneling.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.