Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:27:21.604Z Has data issue: false hasContentIssue false

27 - Simulations of Cells and Biofilms

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Introduces models for biofilms including agent-based models, Vicsek models and cellular automata.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 313 - 320
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

It is reasonably straightforward to start simulating a biofilm using an ABM. It only requires a couple of hours to download some freeware and to run some simple simulations from scratch on a standard pc.

Mounfield, C. C., The Handbook of Agent Based Modelling. Independent Publishing: 2020. Useful collection of models discussed from a physics perspective.Google Scholar
O’Sullivan, D.; Perry, G. L. W., Spatial Simulation: Exploring Patterns and Processes, 1st ed. Wiley: 2013. Useful introductory approach for the development of agent based models to solve physics problems.CrossRefGoogle Scholar
Wilensky, U.; Rand, W., An Introduction to Agent Based Modelling: Modelling Natural, Social and Engineered Complex Systems with NetLogo. MIT Press: 2015. Focuses on NetLogo. Has the advantage that it is in three dimensions and is mathematically simple. It is accessible to non-scientists.Google Scholar

References

Dzianach, P. A.; Dykes, G. A.; Strachan, N. J. C.; Forbes, K. J.; Perez-Reche, F. J., Challenges of biofilm control and utilisation: Lessons from mathematical modelling. Journal of the Royal Society – Interface 2019, 16 (155), 20190042.CrossRefGoogle ScholarPubMed
Jensen, H. J., Complexity Science: The Study of Emergence. Cambridge University Press: 2023.Google Scholar
Li, B.; et al., NUFEB: A massively parallel simulator for individual-based modelling of microbial communities. PLOS One 2019, 15 (12), e1007125.Google ScholarPubMed
Karplus, M.; McCammon, J. A., Molecular dynamics simulations of biomolecules. Nature Structural Biology 2002, 9 (9), 646652.CrossRefGoogle ScholarPubMed
Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications. Academic Press: 2001.Google Scholar
Mounfield, C. C., The Handbook of Agent Based Modelling. Independent Publishing: 2020.Google Scholar
Kreft, J. U.; Booth, G.; Wimpenny, J. W. T., BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 1998, 144 (12), 32753287.CrossRefGoogle ScholarPubMed
Kreft, J. U.; Picioreanu, C.; Wimpenny, J. W. T.; van Loosdrecht, M. C. M., Individual-based modelling of biofilms. Microbiology 2001, 147 (11), 2897.CrossRefGoogle ScholarPubMed
Grimm, V., Individual-based Modeling and Ecology. Princeton University Press: 2005.CrossRefGoogle Scholar
Mattei, M. R.; Frunzo, L.; D’Acunto, B.; Pechaud, Y.; Pirozzi, F.; Esposito, G., Continuum and discrete approach in modeling biofilm development and structure: A review. Journal of Mathematical Biology 2018, 76 (4), 9451003.CrossRefGoogle ScholarPubMed
Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids. Oxford University Press: 2017.CrossRefGoogle Scholar
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Hydrodynamics of soft active matter. Review of Modern Physics 2013, 85 (3), 1143.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
LatifJr, M.; May, E. E., A multiscale agent-based model for the investigation of E. coli K12 metabolic response during biofilm formation. Bulletin of Mathematical Biology 2018, 80 (11), 29172956.CrossRefGoogle ScholarPubMed
Wilensky, U.; Rand, W., An Introduction to Agent-based Modeling: Modeling Natural, Social and Engineered Complex Systems with NETLogo. MIT Press: 2015.Google Scholar
Picioreanu, C.; Van Loosdrecht, M. C. M.; Heijnen, J. J., Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology and Bioengineering 1998, 58 (1), 101116.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Kreft, J. U.; Wimpenny, J. W. T., Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Science and Technology 2001, 43 (6), 135141.CrossRefGoogle Scholar
Ardre, M.; Henry, H.; Douarche, C.; Plapp, M., An individual-based model for biofilm formation at liquid surfaces. Physical Biology 2015, 12 (6), 66015.CrossRefGoogle ScholarPubMed
WItten, T. A.; Sander, L. M., Diffusion-limited aggregates, a kinetic critical phenomenon. Physical Review Letters 1981, 47 (19), 1400.CrossRefGoogle Scholar
Wang, Q.; Zhang, T., Review of mathematical models for biofilms. Solid State Communications 2010, 150 (21), 10091022.CrossRefGoogle Scholar
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Nadell, C. D.; Xavier, J. B.; Levin, S. A.; Foster, K. R., The evolution of quorum sensing in bacterial biofilms. PLOS Biology 2008, 6 (1), e14.CrossRefGoogle ScholarPubMed
Xavier, J. B.; Foaster, K. R., Cooperation and conflict in microbial biofilms. PNAS 2007, 104 (3), 876881.CrossRefGoogle ScholarPubMed
Fozard, J. A.; Lees, M.; King, J. R.; Logan, B. S., Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 2012, 109 (2), 105114.CrossRefGoogle Scholar
Head, D. A., Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model. Physical Review E 2013, 88 (2), 032702.CrossRefGoogle Scholar
Jayathilake, P. G.; et al., A mechanistic individual-based model of microbial communities. PLOS One 2017, 12 (8), e0181965.CrossRefGoogle ScholarPubMed
Farrell, F.; Hallatschek, O.; Marenduzzo, D.; Waclaw, B., Mechanically driven growth of quasi-two-dimensional microbial colonies. Physical Review Letters 2013, 111 (16), 168101.CrossRefGoogle ScholarPubMed
Mabrouk, N.; Deffuant, G.; Tolker-Nielsen, T.; Lobry, C., Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: Evidence from individual-based model simulations. Theory Biosciences 2010, 129 (1), 113.CrossRefGoogle Scholar
Johnson, L. R., Microcolony and biofilm formation as a survival strategy for bacteria. Journal of Theoretical Biology 2008, 251 (1), 2434.CrossRefGoogle ScholarPubMed
Jang, S. S.; Oishi, K. T.; Egbert, R. G.; Klavins, E., Specification and simulation of synthetic multicelled behaviors. ACS Synthetic Biology 2012, 1 (8), 365374.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms: A combined experimental and agent-based fire-diffuse-fire study. Physical Review E 2019, 100 (5-1), 052401.CrossRefGoogle ScholarPubMed
Naylor, J.; Fellermann, H.; Ding, Y.; Mohammed, W. K.; Jakubovics, N. S.; Mukherjee, J.; Biggs, C. A.; Wright, P. C.; Krasnogor, N., Simbiotics: A multiscale integrative platform for 3D modeling of bacterial populations. ACS Synthetic Biology 2017, 6 (7), 11941210.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in Escherichia coli biofilms. eLife 2023, to appear.Google Scholar
Zhang, Z.; Igorshin, O. A.; Cotter, C. R.; Shimkets, L. J., Agent-based modeling reveals possible mechanisms for observed aggregation cell behaviors. Biophysical Journal 2018, 115 (12), 24992511.CrossRefGoogle ScholarPubMed
Melaugh, G.; Hutchison, J.; Kragh, K. N.; Irie, Y.; Roberts, A.; Bjarnsholt, T.; Diggle, S. P.; Gordon, V. D.; Allen, R. J., Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLOS One 2016, 91 (3), e0149683.Google Scholar
Korabel, N.; Clemente, G. D.; Han, D.; Feldman, F.; Millard, T. H.; Waigh, T. A., Hemocytes in Drosophila melanogaster embryos move via heterogeneous anomalous diffusion. Communications Physics 2022, 5 (1), 269.CrossRefGoogle Scholar
Lardon, L. A.; Merkey, B. V.; Martins, S.; Dotsch, A.; Picioreanu, C.; Kreft, J. U.; Smets, B. F., iDynoMiCS: Next-generation individual-based modelling of biofilms. Environmental Microbiology 2011, 13 (9), 24162434.CrossRefGoogle ScholarPubMed
Bauerle, E.; Zimmermann, J.; Baldini, F.; Thiele, I.; Kaleta, C., BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Computational Biology 2017, 13 (5), e1005544.Google Scholar
Rana, N.; Ghosh, P.; Perlekar, P., Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations. Physical Review E 2017, 96 (5-1), 52403.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×