Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
4 - Dispersive Effects
Published online by Cambridge University Press: 27 July 2023
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
Summary
This chapter is devoted to the study of dispersive effects that affect short pulses inside a graded-index fiber. An equation governing the evolution of optical pulses inside a GRIN medium is found in Section 4.1. The dispersion parameters appearing in this equation change, depending on which mode is being considered. Section 4.2 focuses on the distortion of optical pulses resulting from differential group delay and group velocity dispersion. Section 4.3 deals with the effects of linear coupling among the modes, occurring because of random variations in the core’s shape and size along a fiber’s length. A non-modal approach is developed in Section 4.4 for the propagation of short optical pulses inside a GRIN medium. The focus of Section 4.5 is on the applications where optical pulses are sent through a GRIN rod or fiber
Keywords
- Type
- Chapter
- Information
- Physics and Engineering of Graded-Index Media , pp. 84 - 110Publisher: Cambridge University PressPrint publication year: 2023