Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T11:03:24.607Z Has data issue: false hasContentIssue false

9 - The Observer Strikes Back

from Part III - Foundations of Cosmology: Gravity and the Quantum

Published online by Cambridge University Press:  18 April 2017

James Hartle
Affiliation:
University of California – Santa Barbara, USA
Thomas Hertog
Affiliation:
Leuven University, Belgium
Khalil Chamcham
Affiliation:
University of Oxford
Joseph Silk
Affiliation:
University of Oxford
John D. Barrow
Affiliation:
University of Cambridge
Simon Saunders
Affiliation:
University of Oxford
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S.W., Hawking.and T., Hertog. Populating the Landscape: A Top Down Approach, Phys. Rev. D 73, 123527 (2006), arXiv:hep-th/0602091.
[2] S., Saunders. J., Barrett. A, Kent. and D., Wallace. eds, Many Worlds. (Oxford: OUP, 2010).
[3] J.B., Hartle. The Quantum Mechanics of Closed Systems. In B.-L., Hu. M. P., Ryan.and C. V., Vishveshwara. eds., Directions in General Relativity. Volume 1,(Cambridge: Cambridge University Press, 1993), arXiv: gr-qc/9210006.
[4] J.B., Hartle. Spacetime Quantum Mechanics and the Quantum Mechanics of Spacetime. In B., Julia.and J., Zinn-Justin. eds., Gravitation and Quantizations, Proceedings of the 1992 Les Houches Summer School. (Amsterdam: North Holland, 1995), gr-qc/9304006.
[5] J. B., Hartle. S.W., Hawking.and T., Hertog. The no-boundary measure of the universe. Phys. Rev. Lett. 100, 202301 (2008), arXiv:0711:4630.Google Scholar
[6] J. B., Hartle. S. W., Hawking.and T., Hertog. Classical universes of the no-boundary quantum state. Phys. Rev. D 77, 123537 (2008), arXiv:0803.1663.Google Scholar
[7] J.B., Hartle.and T., Hertog. Replication regulates volume weighting in quantum cosmology. Phys. Rev. D. 80, 063531 (2009), arXiv:0906.0042.
[8] J. B., Hartle. S.W., Hawking.and T., Hertog. The No-Boundary Measure in the Regime of Eternal Inflation. Phys. Rev. D 82, 063510 (2010), arXiv:1001.0262.Google Scholar
[9] J. B., Hartle. S. W., Hawking.and T., Hertog. Local Observation in Eternal Inflation. Phys. Rev. Lett. 106, 141302 (2011), arXiv:1009.252.Google Scholar
[10] J. B., Hartle.and S. W., Hawking. The Wave Function of the Universe. Phys. Rev. D. 28, 2960–75 (1983).
[11] M., Srednicki.and J.B., Hartle. Science in a Very Large Universe. Phys. Rev. D 81 123524 (2010), arXiv:0906.0042.Google Scholar
[12] J.B., Hartle.and M., Srednicki. Are We Typical., Phys. Rev. D 75, 123523 (2007), arXiv:0704.2630.Google Scholar
[13] D., Page. Space for both no-boundary and tunneling quantum states of the universe. Phys. Rev. D 56, 2065 (1997).Google Scholar
[14] S.W., Hawking. Volume weighting in the no boundary proposal, (2007), arXiv:0710.2029.
[15] J.B., Hartle.and T., Hertog. Anthropic Bounds on Lambda from the No-Boundary Quantum State. Phys. Rev. D 88, 123516 (2013).Google Scholar
[16] J., Barrow. F., Tipler. The Anthropic Cosmological Principle. (Oxford: Oxford University Press, 1986).
[17] S., Weinberg. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett., 62, 485 (1989).Google Scholar
[18] G.W., Lyons. Complex solutions for the scalar field model of the universe. Phys. Rev. D, 46, 1546–50 (1992).Google Scholar
[19] M., Tegmark. A., Aguirre. M.J., Rees.and F., Wilczek. Dimensionless constants,cosmology, and other dark matters. Phys. Rev. D 73, 023505 (2006).Google Scholar
[20] M., Livio.and M.J., Rees. Anthropic Reasoning. Science, 309, 1022 (2005).Google Scholar
[21] J. B., Hartle. Anthropic Reasoning and Quantum Cosmology. AIP Conf. Proc. 743, 298 (2005), arXiv:gr-qc/0406104.Google Scholar
[22] A., Starobinsky. Stochastic de Sitter (Inflationary) state in the early universe. In H., de Vega.and N., Sanchez. eds. Field theory, quantum gravity and strings. (Berlin: Springer-Verlag, 1986).
[23] A. D., Linde. D. A., Linde.and A., Mezhlumian. From the big bang theory to the theory of a stationary universe. Phys. Rev. D 49, 1783 (1986).Google Scholar
[24] P., Creminelli. S., Dubovsky. A., Nicolis. L., Senatore.and M., Zaldarriaga. The phase transition to slow-roll eternal inflation, JHEP 0809, 036 (2008), arXiv:0802.1067.
[25] A., Vilenkin. Birth of inflationary universes. Phys. Rev. D 27, 2848 (1983).Google Scholar
[26] A.D., Linde. Eternally existing self-reproducing chaotic inflationary universe. Phys. Lett. B 175, 395 (1986).Google Scholar
[27] L., Susskind. The Anthropic landscape of string theory, In Carr, B. ed. Universe or multiverse. (Cambridge: Cambridge University Press, 2007), pp. 247–66.
[28] T., Hertog. Predicting a Prior for Planck. JCAP 02 (2014) 043; arXiv:1305.6135.Google Scholar
[29] M., Gell-Mann.and J., Hartle. Quasiclassical Coarse Graining and Thermodynamic Entropy. Phys. Rev. A, 76, 022104 (2007), arXiv:quant-ph/0609190.Google Scholar
[30] J.A., Wheeler.and K., Ford. Geons, Black Holes and Quantum Foam. New York: Norton & Company, (1998).
[31] H., Putnam. Realism with a Human Face. (Cambridge, MA: Harvard University Press, 1990).
[32] H., Everett III. Relative State Formulation of Quantum Mechanics. Rev. Mod. Phys., 29, 454, (1957).Google Scholar
[33] J. J., Halliwell.and S. W., Hawking. Origin of Structure in the Universe. Phys. Rev. D 31, 1777 (1985).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×