Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T19:01:05.697Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 April 2020

Brent Fultz
Affiliation:
California Institute of Technology
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Onsager, L., Phys. Rev. 65, 117 (1944).Google Scholar
[2] Cerezo, A., Hyde, J.M., Miller, M.K., et al., Phil. Trans. Roy. Soc. London A 341, 313 (1992).Google Scholar
[3] Hume-Rothery, W. and Raynor, G.V., The Structure of Metals and Alloys (Institute of Metals, London, 1962).Google Scholar
[4] Cottrell, A., Introduction to the Theory of Metals (Institute of Metals, London, 1988).Google Scholar
[5] Darken, L.S. and Gurry, R.W., Physical Chemistry of Metals (McGraw–Hill, New York, 1953), p. 74.Google Scholar
[6] Pettifor, D.G., Bonding and Structure of Molecules and Solids (Clarendon Press, Oxford, 1995).Google Scholar
[7] Miedema, A.R., de Chatel, P.F., and de Boer, F.R., Physica B,C 100, 1 (1980).Google Scholar
[8] Okamoto, H., Desk Handbook Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).Google Scholar
[9] Gibbs, J.W., Trans. Conn. Acad. 3, 108 (1876).Google Scholar
[10] Villars, P., Ed., with Okamoto, H. and Cenzual, K., ASM Alloy Phase Diagram Database (ASM International, Materials Park, OH, 2006–2013).Google Scholar
[11] Kittel, C., Thermal Physics (John Wiley, New York, 1969), Chapter 2.Google Scholar
[12] Warren, B.E., X-Ray Diffraction (Dover, Mineola, New York, 1990).Google Scholar
[13] Gorsky, W., Z. Physik 50, 64 (1928).Google Scholar
[14] Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. London A 145, 699 (1934).Google Scholar
[15] Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. London A 151, 540 (1935). Ibid. 152, 231.Google Scholar
[16] Bethe, H.A., Proc. Roy. Soc. London A 150, 552 (1935).Google Scholar
[17] de Fontaine, D., Acta Metall. 23, 553 (1975).Google Scholar
[18] West, D.R.F. and Saunders, N., Ternary Phase Diagrams in Materials Science, Third Edn. (Institute of Materials, London, 2002).Google Scholar
[19] Saunders, N. and Miodownik, A.P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Volume 1 (Pergamon Press, Oxford, 1998).Google Scholar
[20] Turchi, P.E.A., Gonis, A., and Shull, R.D., Eds., CALPHAD and Alloy Thermodynamics (TMS, Warrendale, PA, 2002).Google Scholar
[21] Turchi, P.E.A., Abrikosov, I.A., Burton, B., et al., CALPHAD 31, 4 (2007).Google Scholar
[22] Sarmiento-Perez, R., Cerqueira, T.F.T., Valencia-Jaime, I., et al., New J. Phys. 15, 115007 (2013).Google Scholar
[23] Morse, P.M. and Feshbach, H., Methods of Theoretical Physics (McGraw–Hill, New York, 1953), Chapters 5 and 10.Google Scholar
[24] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 117, 52 (1960).Google Scholar
[25] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 125, 862 (1962).Google Scholar
[26] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 129, 1533 (1963).Google Scholar
[27] Feder, R. and Nowick, A.S., Philos. Mag. 15, 805 (1967).CrossRefGoogle Scholar
[28] Schefer, H.-E., Frenner, K., and Würschum, R., Phys. Rev. Lett. 82, 948 (1999).Google Scholar
[29] Lee, J.K. and Aaronson, H.I., Acta Metall. 23, 799 (1975).Google Scholar
[30] Dahmen, U., Hagège, S., Faudot, F., Radetic, T., and Johnson, E., Philos. Mag. 84, 2651 (2004).Google Scholar
[31] Gibbs, J.W., Trans. Conn. Acad. 11, 382 (1873).Google Scholar
[32] Volmer, M. and Weber, A., Phys, Z.. Chem. 119, 277 (1926).Google Scholar
[33] Farkas, Z., Phys, Z.. Chem. A125, 236 (1927).Google Scholar
[34] Becker, R. and Döring, W., Ann. Phys. 24, 1 (1935).Google Scholar
[35] Zeldovich, J.B., Acta Physicochim. 18, 1 (1943).Google Scholar
[36] Kelton, K.F. and Greer, A.L., Nucleation in Condensed Matter: Applications in Materials and Biology (Pergamon Press, Oxford, 2010).Google Scholar
[37] Trinkaus, H. and Yoo, M.H., Philos. Mag. A55, 269 (1987).Google Scholar
[38] Shi, G., Seinfeld, J.H., and Okuyama, K., Phys Rev. A41, 2101 (1990).Google Scholar
[39] Wu, D.T., in Solid State Physics, Volume 50, Ehrenreich, H. and Spaepen, F., Eds. (Academic Press, New York, 1997) p. 37, Section 11.Google Scholar
[40] Gulliver, G.H., J. Inst. Met. 9, 120 (1913).Google Scholar
[41] Scheil, E., Z. Metallk. 34, 70 (1942).Google Scholar
[42] Klement, W., Willens, R.H., and Duwez, P., Nature 187, 869 (1960).Google Scholar
[43] Kittel, C., Introduction to Solid State Physics Fourth Edn. (Wiley, New York, 1971), p. 143.Google Scholar
[44] Medvedeva, N.I., Gornostyrev, Y.N., and Freeman, A.J., Phys. Rev. B 67, 134204 (2003).Google Scholar
[45] The Fermi Surface Database www.phys.ufl.edu/fermisurface/.Google Scholar
[46] Choy, T.S., Naset, J., Chen, J., Hershfield, S., and Stanton, C., Bull. Amer. Phys. Soc. 45, 42 (2000).Google Scholar
[47] Sholl, D.S. and Steckel, J.A., Density Functional Theory: A Practical Introduction (John Wiley and Sons, Hoboken, New Jersey, 2009).Google Scholar
[48] Frary, M., “Anisotropic Elasticity,” Wolfram Demonstrations Project (Wolfram Research Inc., 2011).Google Scholar
[49] Eshelby, J.D., J. Appl. Phys. 25, 255 (1954).Google Scholar
[50] Eshelby, J.D., Solid State Phys. 3, 79 (1956).Google Scholar
[51] Eshelby, J.D., Proc. Roy. Soc. London A 241, 376 (1957).Google Scholar
[52] Nabarro, F.R.N., Proc. Roy. Soc. London A 175, 519 (1940).Google Scholar
[53] Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
[54] Kikuchi, R., J. Chem. Phys. 60, 1071 (1974).Google Scholar
[55] de Fontaine, D., in Solid State Physics, Volume 34, Ehrenreich, H., Seitz, F., and Turnbull, D., Eds. (Academic Press, New York, 1979), p. 73.Google Scholar
[56] Fowler, R.H. and Guggenheim, E.A., Proc. Roy. Soc. London A 174, 189 (1940).Google Scholar
[57] Sanchez, J.M., Ducastelle, F., and Gratias, D., Physica A 128, 334 (1984).CrossRefGoogle Scholar
[58] Connolly, J.W.D. and Williams, A.R., Phys. Rev. B 27, 5169 (1983).Google Scholar
[59] Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
[60] Van Baal, C.M., Physica 64, 571 (1973).Google Scholar
[61] Sanchez, J.M. and de Fontaine, D., Phys. Rev. B 21, 216 (1980).Google Scholar
[62] Cenedese, P. and Kikuchi, R., Physica A 205, 747 (1994).Google Scholar
[63] Nernst, W. and Lindemann, F.A., Berl. Ber. 494 (1911).Google Scholar
[64] Gopal, E.S.R., Specific Heats at Low Temperatures (Plenum, New York, 1966).Google Scholar
[65] McCullough, J.P. and Scott, D.W., Eds. Experimental Thermodynamics Volume 1: Calorimetry of Non-Reacting Systems (Plenum, New York, 1968).Google Scholar
[66] Lang, B.E., Boerio-Goates, J., and Woodfield, B.F., J. Chem. Thermodynamics 38, 1655 (2006).Google Scholar
[67] Bachmann, R., DiSalvo, F.J., Geballe, T.H., et al., Rev. Sci. Instr. 43, 205 (1972).Google Scholar
[68] Stewart, G.R., Rev. Sci. Instr. 54, 1 (1983).Google Scholar
[69] Lashley, J.C., Hundley, M.F., Migliori, A., et al., Cryogenics 43, 369 (2003).Google Scholar
[70] Kennedy, C.A., Stancescu, M., Marriott, R., and Whsite, M.A. Cryogenics 47, 107 (2007).Google Scholar
[71] Einstein, A., Ann. Phys. 22, 180 (1907).Google Scholar
[72] Maradudin, A.A., Montroll, E.W., Weiss, G.H., and Ipatova, I.P., Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971).Google Scholar
[73] Born, M. and Wang, K., Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1988).Google Scholar
[74] Dove, M.T., Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).Google Scholar
[75] van de Walle, A. and Ceder, G., Rev. Mod. Phys. 74, 11 (2002).Google Scholar
[76] Moraitis, G. and Gautier, F., J. Phys. F: Metal Phys. 7, 1421 (1977).Google Scholar
[77] Matthew, J.A.D., Jones, R.E., and Dwyer, V.M., J. Phys. F: Metal Phys. 13, 581 (1983).Google Scholar
[78] Waegemaekers, A.A.H.J. and Bakker, H., Mater. Res. Soc. Symp. Proc. 21, 343 (1984).Google Scholar
[79] Garbulsky, G.D. and Ceder, G., Phys. Rev. B 53, 8993 (1996).Google Scholar
[80] Baer, S., J. Phys. C: Solid State Phys. 16, 4103 (1983).Google Scholar
[81] Mahanty, J. and Sachdev, M., J. Phys. C 3, 773 (1970).Google Scholar
[82] Bakker, H., Philos. Mag. A 45, 213 (1982).Google Scholar
[83] Bakker, H., Phys. Stat. Solidi B 109, 211 (1982).Google Scholar
[84] Delaire, O., Swan-Wood, T., and Fultz, B., Phys. Rev. Lett. 93, 185704 (2004).CrossRefGoogle Scholar
[85] Fultz, B. and Howe, J.M., Transmission Electron Microscopy and Diffractometry of Materials Fourth Edn. (Springer, Heidelberg, 2013).CrossRefGoogle Scholar
[86] Sluiter, M.H.F., Weinert, M., and Kawazoe, Y., Phys. Rev. B 59, 4100 (1999).Google Scholar
[87] van de Walle, A. and Ceder, G., Phys. Rev. B 61, 5972 (2000).Google Scholar
[88] Wu, E.J., Ceder, G., and van de Walle, A., Phys. Rev. B 67, 134103 (2003).Google Scholar
[89] Slater, J.C., Introduction to Chemical Physics (McGraw-Hill, New York, 1939), Chapter 13.Google Scholar
[90] Desgreniers, S., Vohra, Y.K., and Ruoff, A.L., J. Phys. Chem. 94, 1117 (1990).Google Scholar
[91] Weck, G., Desgreniers, S., and Loubeyre, P., Phys. Rev. Lett. 102, 255503 (2009).Google Scholar
[92] Dias, R.P. and Silvera, I.F., Science 355, 715 (2017).Google Scholar
[93] Winterrose, M.L., Lucas, M.S., Yue, A. F., et al., Phys. Rev. Lett. 102, 237202 (2009).Google Scholar
[94] Tong, X., Xu, X., Fultz, B., et al., Phys. Rev. B 95, 094306 (2017).Google Scholar
[95] Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
[96] Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986).Google Scholar
[97] Chen, L.J., Lin, J.H., Lee, T.L., et al., Microsc. Res. Tech. 40, 136 (1998).Google Scholar
[98] Gorsky, W.S., Phys. Zeitschr. Sowjetunion 8, 457 (1935).Google Scholar
[99] Snoek, J.L., Physica 8, 711 (1941).Google Scholar
[100] Cottrell, A.H. and Jaswon, M.A., Proc. Roy. Soc. A199, 104 (1949).Google Scholar
[101] Vreeland, T., Wood, D.S., and Clark, D.S., Trans. Amer. Soc. Metals 45, 620 (1953).Google Scholar
[102] Holstein, T., Ann. Phys. 8, 325 (1959). Ibid 8, 342 (1959).Google Scholar
[103] Emin, D. and Holstein, T., Ann. Phys. 53, 439 (1969).Google Scholar
[104] Austin, I.G. and Mott, N.F., Adv. Phys. 18, 41 (1969).Google Scholar
[105] Mott, N., J. Non-Cryst. Solids 1, 1 (1968).Google Scholar
[106] Schmid, H., Ferroelectrics 162, 317 (1994).Google Scholar
[107] Heckmann, G., Ergeb. Exakten Naturwiss. 4, 100 (1925).Google Scholar
[108] Nye, J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).Google Scholar
[109] Nagel, L.J., Fultz, B., Robertson, J.L., and Spooner, S., Phys. Rev. B 55, 2903 (1997).Google Scholar
[110] Manley, M.E., Fultz, B., and Nagel, L.J., Philos. Mag. B 80, 1167 (2000).Google Scholar
[111] Nagel, L.J., Ph.D. thesis in materials science, California Institute of Technology (1996).Google Scholar
[112] Gopalan, V., Dierolf, V., and Scrymgeour, D.A., Annu. Rev. Mater. Res. 37, 449 (2007).Google Scholar
[113] Zhao, Z., Ding, X., Lookman, T., Sun, J., and Salje, E.K.H., Adv. Mater. 25, 3244 (2013).Google Scholar
[114] Tartar, L., The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana 7 (Springer-Verlag, Berlin Heidelberg, 2010).Google Scholar
[115] Cahn, J.W., Acta Metall. 10, 179 (1962).Google Scholar
[116] Huh, J.Y., Howe, J.M., and Johnson, W.C., Scripta Metall. 24, 2007 (1990).Google Scholar
[117] Hillert, M. and Staffansson, L.-I., Acta Chem. Scand. 24 , 3618 (1970).Google Scholar
[118] Sundman, B. and Ågren, J., J. Phys. Chem. Solids 42, 297 (1981).Google Scholar
[119] Yeh, X.L., Samwer, K., and Johnson, W.L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
[120] Yeh, Xian-Li, Ph.D. thesis in applied physics, California Institute of Technology (1987).Google Scholar
[121] Bowman, R.C., Luo, C.H., Ahn, C.C., Witham, C.K., and Fultz, B., J. Alloys Compounds 217, 185 (1995).Google Scholar
[122] Samwer, K., Yeh, X.L., and Johnson, W.L., J. Non-Cryst. Solids 61, 631 (1984).Google Scholar
[123] Manning, J.R., Acta Metall. 15, 817 (1967).Google Scholar
[124] Kikuchi, R. and Sato, H., J. Chem. Phys. 53, 2702 (1970).Google Scholar
[125] Bakker, H., Philos. Mag. 40, 525 (1979).Google Scholar
[126] Sato, H. and Kikuchi, R., Acta Metall. 24, 797 (1976).Google Scholar
[127] Fultz, B., J. Chem. Phys. 87, 1604 (1987).Google Scholar
[128] Siegel, R.W., Annu. Rev. Mater. Sci. 10, 393 (1980).Google Scholar
[129] Kajcsos, Zs., Phys. Scripta T25, 26 (1989).Google Scholar
[130] Seeger, A., J. Phys. F: Metal Phys. 3, 248 (1973).Google Scholar
[131] Puska, M.J. and Nieminen, R.M., Rev. Modern Phys. 66, 841 (1994).Google Scholar
[132] Boronski, E., Europhys. Lett. 75, 475 (2006).Google Scholar
[133] Smigelskas, A.D. and Kirkendall, E.O., Trans. AIME 171, 131 (1947).Google Scholar
[134] Martin, G., Phys. Rev. B 30, 1424 (1984).Google Scholar
[135] Martin, G. and Bellon, P., Solid State Physics, Volume 50, H. Ehrenreich and F. Spaepen, Eds. (Academic Press, New York, 1996), p. 189.Google Scholar
[136] Vineyard, G., J. Phys. Chem. Solids 3, 121 (1957).Google Scholar
[137] Rice, S., Phys. Rev. 112, 804 (1958).Google Scholar
[138] Burton, W.K., Cabrera, N., and Frank, F.C., Nature 163, 398 (1949).Google Scholar
[139] Burton, W.K., Cabrera, N., and f Frank, , Phil. Trans. Roy. Soc. London 243, A 866 (1951).Google Scholar
[140] Jackson, K.A., Cryst, J.. Growth 24 /25, 130 (1974).Google Scholar
[141] Lomer, W.M. and Nye, J.F., Proc. Roy. Soc. London A 212, 576 (1952).Google Scholar
[142] Read, W.T. and Shockley, W., Phys. Rev. 78, 275 (1950).Google Scholar
[143] Van Swygenhoven, H., Farkas, D., and Caro, A., Phys. Rev. B 62, 831 (2000).Google Scholar
[144] Yuasa, M., Nakazawa, T., and Mabuchi, M., J. Phys.: Condens. Matter 24, 265703 (2012).Google Scholar
[145] Olmsted, D., Foiles, S.M., and Holm, E.A., Acta Mater. 57, 3694 (2009).Google Scholar
[146] Setyawan, W. and Kurtz, R.J., Scripta Mater. 66, 558 (2012).Google Scholar
[147] Sangid, M.D., Ezaz, T., Sehitoglu, H., and Robertson, I.M., Acta Mater. 59, 283 (2011).Google Scholar
[148] Udler, D. and Seidman, D.N., Phys. Rev. B 54, R11133 (1996).Google Scholar
[149] Foiles, S.M., Scripta Mater. 62, 231 (2010).Google Scholar
[150] Kikuchi, R. and Cahn, J.W. Phys. Rev. B 21, 1893 (1980).Google Scholar
[151] Pandit, R., Schick, M., and Wortis, M., Phys. Rev. B 26, 5112 (1982).Google Scholar
[152] Cahn, J.W. and Kikuchi, R., Phys. Rev. B 36, 418 (1987).Google Scholar
[153] Cantwell, P.R., Tang, M., Dillon, S.J., et al., Acta Mater. 62, 1 (2014).Google Scholar
[154] Frolov, T., Olmsted, D.L., Asta, M., and Mishin, Y., Nature Commun. 4, 1899 (2013).Google Scholar
[155] Frolov, T., Asta, M., and Mishin, Y., Phys. Rev. B 92, 020103 (2015).Google Scholar
[156] Cantwell, P.R., Ma, S., Bojarski, S.A., Rohrer, G.S., and Harmer, M.P., Acta Mater. 106, 78 (2016).Google Scholar
[157] Clarke, D.R., J. Amer. Ceramic Soc. 70, 15 (1987).Google Scholar
[158] Keblinski, P., Phillpot, S.R., Wolf, D., and Gleiter, H., Phys. Rev. Lett. 77, 2965 (1996).Google Scholar
[159] McLean, D., Grain Boundaries in Metals (Clarendon Press, Oxford, 1957). Chapter 5.Google Scholar
[160] Zucker, R.V., Chatain, D., Dahmen, U., Hagège, S., and Carter, W.C., J. Mater. Sci. 47, 8290 (2012).Google Scholar
[161] Desré, P.J. and Yavari, A.R., Phys. Rev. Lett. 64, 1533 (1990).Google Scholar
[162] Gösele, U. and Tu, K.N., J. Appl. Phys. 53, 3252 (1982).Google Scholar
[163] Nicolet, M.-A. and Lau, S.S., in VLSI Electronics, Volume 6, Einspruch, N.G. and Larrabee, G.B., Eds. (Academic Press, New York, 1983), p. 329.Google Scholar
[164] Walser, R. and Bené, R., Appl. Phys. Lett. 28, 624 (1976).Google Scholar
[165] Purewal, J., Ph.D. thesis in materials science, California Institute of Technology (2010).Google Scholar
[166] Dash, J.G. Contemp. Phys. 89 (1989).Google Scholar
[167] Rosenberg, R., Phys. Today 58, 50 (2005).Google Scholar
[168] Yang, Y., Asta, M., and Laird, B.B., Phys. Rev. Lett. 110, 096102 (2013).Google Scholar
[169] Mellenthin, J., Karma, A., and Plapp, M., Phys Rev. B 78, 184110 (2008).Google Scholar
[170] Tang, M., Carter, W.C., and Cannon, R.M., Phys. Rev. B 73, 024102 (2006).Google Scholar
[171] Yang, Y., Olmsted, D.L., Asta, M., and Laird, B.B., Acta Mater. 60, 4960 (2012).Google Scholar
[172] Palafox-Hernandeza, J.P., Laird, B.B., and Asta, M., Acta Mater. 59, 3137 (2011).Google Scholar
[173] Minakov, A.A., Wurm, A., and Schick, C., Eur. Phys. J. E 23, 4353 (2007).Google Scholar
[174] Daeges, J., Gleiter, H., and Perepezko, J.H., Phys. Lett. A 119, 79 (1986).Google Scholar
[175] Takeya, S., Appl. Phys. Lett. 88, 074103 (2006).Google Scholar
[176] Forsblom, M. and Grimvall, G., Nature 4, 388 (2005).Google Scholar
[177] Belonoshko, A.B., Skorodumova, N.V., Rosengren, A., and Johansson, B., Phys. Rev. B 73, 012201 (2006).Google Scholar
[178] Fecht, H.J. and Johnson, W.L., Nature 334, 50 (1988).Google Scholar
[179] Lawson, A.C., Philos. Mag. 89, 1757 (2009).Google Scholar
[180] Rose, J.H., Ferrante, J., and Smith, J.R., Phys. Rev. Lett. 47, 675 (1981).Google Scholar
[181] Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
[182] Tang, X., Li, C.W., and Fultz, B., Phys. Rev. B 82, 184301 (2010).Google Scholar
[183] Jacobs, M.H.G. and Schmid-Fetzer, R., Phys. Chem. Minerals 37, 721 (2010).Google Scholar
[184] Spenscer, P.J. and the Scientific Group Thermodata Europe (SGTE), Landolt– Börnstein / New Series Group IV: Physical Chemistry, Volume 19 (Springer, Heidelberg, 1999).Google Scholar
[185] SGTE Scientific Group Thermodata Europe www.met.kth.se/sgte/.Google Scholar
[186] Bock, N., Coffey, D., and Wallace, D.C., Phys. Rev. B 72, 155120 (2005).Google Scholar
[187] Bock, N., Wallace, D.C., and Coffey, D., Phys. Rev. B 73, 075114 (2006).Google Scholar
[188] Kresch, M.G., Lucas, M.S., Delaire, O., Lin, J.Y.Y., and Fultz, B., Phys. Rev. B 77, 024301 (2008).Google Scholar
[189] Forsblom, M. and Grimvall, G., Phys. Rev. B 72, 132204 (2005).Google Scholar
[190] Körmann, F., Dick, A., Grabowski, B., et al., Phys. Rev. B 78, 033102 (2008).Google Scholar
[191] Körmann, F., Dick, A., Grabowski, B., Hickel, T., and Neugebauer, J., Phys. Rev. B 85, 125104 (2012).Google Scholar
[192] Wallace, D.C., Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State (World Scientific, Singapore, 2003).Google Scholar
[193] Lindemann, F.A., Phys. Z. 11, 609 (1910).Google Scholar
[194] Gilvarry, J.J., Phys. Rev. 102, 308 (1956).Google Scholar
[195] Gschneidner, K., Jr., Solid State Physics, Volume 16, F. Seitz and D. Turnbull, Eds. (Academic Press, New York, 1965), p. 275.Google Scholar
[196] Kauzmann, W., Chem. Rev. 43, 219 (1948).Google Scholar
[197] Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W., J. Appl. Phys. 88, 3113 (2000).Google Scholar
[198] Debenedetti, P.G. and Stillinger, F.H., Nature 410, 259 (2001).Google Scholar
[199] Ediger, M.D., Annu. Rev. Phys. Chem. 51, 99 (2000).Google Scholar
[200] Johnson, W.L., Demetriou, M.D., Harmon, J.S., Lind, M.L., and Samwer, K., MRS Bull. 32, 644 (2007).Google Scholar
[201] Bohmer, R., Ngai, K.L., Angell, C.A., and Plazek, D.J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
[202] Angell, C.A., Science 267, 1924 (1995).Google Scholar
[203] Smith, H.L., Li, C.W., Hoff, A., et al., Nature Phys. 13, 900 (2017).Google Scholar
[204] Goldstein, M., J. Chem. Phys. 64, 4767 (1976).Google Scholar
[205] Gujrati, P.D. and Goldstein, M., J. Phys. Chem. 84, 859 (1980).Google Scholar
[206] Johari, G.P., J. Chem. Phys. 112, 7518 (2000).Google Scholar
[207] Kosterlitz, J.M. and Thouless, D.J., J. Phys. C: Solid State Phys. 6, 1181 (1973).Google Scholar
[208] Kurz, W. and Fisher, D.J., Fundamentals of Solidification (Trans Tech, Switzerland, 1989).Google Scholar
[209] Chalmers, B., Physical Metallurgy (Wiley, New York, 1959).Google Scholar
[210] Chalmers, B., Principles of Solidification (John Wiley & Sons, New York, 1964), pp. 118, 119.Google Scholar
[211] Karma, A. and Rappel, W.J., Phys. Rev. E 57, 4323 (1998).Google Scholar
[212] Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A., Annu. Rev. Mater. Res. 32, 163 (2002).Google Scholar
[213] Warren, J.A. and Boettinger, W.J., Acta Metall. Mater. 43, 689 (1995).Google Scholar
[214] Hoyt, J.J., Asta, M., and Karma, A., Mater. Sci. Eng. Rep. 41, 121 (2003).Google Scholar
[215] Brody, H.D. and Flemings, M.C., Trans. AIME, 236, 651 (1966).Google Scholar
[216] Bower, T.F., Brody, H.D., and Flemings, M.C., Trans. AIME, 236, 624 (1966).Google Scholar
[217] Saffman, P.G. and Taylor, G., Proc. Roy. Soc. 245, 312 (1958).Google Scholar
[218] Huang, S.-C. and Glicksman, M.E., Acta Metall. 29, 701 (1981).Google Scholar
[219] Langer, J.S., Rev. Mod. Phys. 52, 1 (1980).Google Scholar
[220] Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 34, 323 (1963).Google Scholar
[221] Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35, 444 (1964).Google Scholar
[222] Ivanstov, G.P., Doklady Akad. Nauk SSSR 58, 567 (1947).Google Scholar
[223] Langer, J.S. and Müller-Krumbhaar, H., Acta Metall. 26, 1681 (1978). Ibid. 26, 1689 (1978). Ibid. 26, 1697 (1978).Google Scholar
[224] Lipton, J., Glicksman, M.E., and Kurz, W., Mater. Sci. Eng. 65, 57 (1984).Google Scholar
[225] Glicksman, M.E., Koss, M.B., and Winsa, E.A., Phys. Rev. Lett. 73, 573 (1994).Google Scholar
[226] Clarke, A.J., Tourret, D., Song, Y., et al., Acta Mater. 129, 203 (2017).Google Scholar
[227] Ben-Jacob, E., Goldenfield, N.D., Langer, J.S., and Schon, G., Phys. Rev. Lett. 51, 1930 (1981). Ibid. 29, 330 (1984).Google Scholar
[228] Kessler, D.A., Koplik, J., and Levine, H., Phys. Rev. A 33, 3352 (1986).Google Scholar
[229] Kessler, D.A. and Levine, H., Acta. Metall. 36, 2693 (1988).Google Scholar
[230] Gurevich, S., Karma, A., Plapp, M., and Trivedi, R., Phys. Rev E 81, 011603 (2010).Google Scholar
[231] Hono, K., Prog. Mater. Sci. 47, 621 (2002).Google Scholar
[232] Wang, S.C. and Starink, M.J., Int. Mater. Rev. 50, 193 (2005).Google Scholar
[233] Polmear, I.J., Trans. Metall. Soc. AIME 230, 1331 (1964).Google Scholar
[234] Taylor, J.A., Parker, B.A., and Polmear, I.J., Metall. Sci. 12, 478 (1978).Google Scholar
[235] Garg, A. and Howe, J.M., Acta Metall. Mater. 39, 1939 (1991).Google Scholar
[236] Hardy, H.K., J. Inst. Met. 78, 169 (1950).Google Scholar
[237] Kimura, H. and Hashiguti, R., Acta Metall. 9, 1076 (1961).Google Scholar
[238] Banerjee, R., Nag, S., Stechschulte, J., and Fraser, H.L., Biomaterials 25, 3413 (2004).Google Scholar
[239] Bachhav, M., Yao, L., Odette, G.R., and Marquis, E.A., J. Nucl. Mater. 453, 334 (2014).Google Scholar
[240] Hehemann, R.F., Kinsman, K.R., and Aaronson, H.I., Metall. Trans. 3A, 1077 (1972).Google Scholar
[241] United States Steel Company, Atlas of Isothermal Transformation Diagrams (U.S. Steel Company, Pittsburgh, PA, 1951).Google Scholar
[242] Langer, J.S. and Schwartz, A.J., Phys. Rev. A21, 948 (1980).Google Scholar
[243] Binder, K. and Stauffer, D., Adv. Phys. 25, 343 (1976).Google Scholar
[244] Hoyt, J.J., Phase Transformations (McMaster Innovation Press, Hamilton, ON, 2010).Google Scholar
[245] f Kolmogorov, , Akad. Nauk SSSR, Izv., Ser. Matem. 355, 1 (1937).Google Scholar
[246] Johnson, W.A. and Mehl, P.A., Trans. AIME 135, 416 (1939).Google Scholar
[247] Avrami, M., J. Chem. Phys. 7, 1103 (1939).Google Scholar
[248] Avrami, M., J. Chem. Phys. 8, 212 (1940).Google Scholar
[249] Avrami, M., J. Chem. Phys. 9, 177 (1941).Google Scholar
[250] Cahn, J.W., Acta Metall. 4, 449 (1956).Google Scholar
[251] Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
[252] Wagner, C., Z. Electrochem. 65, 581 (1961).Google Scholar
[253] Balluffi, R.W., Allen, S.M., and Carter, W.C., Kinetics of Materials (Wiley-Interscience, Hoboken, NJ, 2005), Chapter 15 and references therein.Google Scholar
[254] Krill, C.E. and Chen, L.Q., Acta Mater. 50, 3057 (2002).Google Scholar
[255] Cahn, J.W., Acta Metall. 10, 1 (1962).Google Scholar
[256] Baker, J.C. and Cahn, J.W., in Solidification, T.J. Hughel and Bolling, G.F., Eds. (ASM, Metals Park, OH, 1971), p. 23.Google Scholar
[257] Hillert, M. and Sundman, B., Acta Metall. 24, 731 (1976).Google Scholar
[258] Hillert, M., Acta Mater. 47, 4481 (1999).Google Scholar
[259] Aziz, M.J. and Kaplan, T., Acta Metall. 36, 2335 (1988).Google Scholar
[260] Cahn, J.W., Acta Metal., 10, 789 (1962).Google Scholar
[261] Herlach, D.M., Mater. Sci. Eng. R 12, 177 (1994).Google Scholar
[262] Walder, S. and Ryder, P.L., Acta Metall. Mater. 43, 4007 (1995).Google Scholar
[263] Sobolev, S.L., Acta Mater. 61, 7881 (2013).Google Scholar
[264] Humadi, H., Hoyt, J.J., and Provatas, N., Phys. Rev. E 93, 010801(R) (2016).Google Scholar
[265] Liu, G., Zhang, G.J., Ding, X.D., Sun, J., and Chen, K.H., Mater. Sci. Eng. A 344, 113 (2003).Google Scholar
[266] Eshelby, J.D., Solid State Physics, Volume 3 (Academic Press, New York, 1956), p. 79.Google Scholar
[267] Khachaturyan, A.G., Theory of Structural Transformations in Solids (Wiley-Interscience, New York, 1983).Google Scholar
[268] Bitter, F., Phys. Rev. 37, 1527 (1931).Google Scholar
[269] Crum, M.M., communication cited in F.R.N. Nabarro, Proc. Roy. Soc. A 125, 519 (1940).Google Scholar
[270] Cahn, J.W. and Larché, F.C., Acta Metall. 32, 1915 (1984).Google Scholar
[271] Schwarz, R.B. and Khachaturyan, A.G., Phys. Rev. Lett. 74, 2523 (1995).Google Scholar
[272] Schwarz, R.B. and Khachaturyan, A.G., Acta Mater. 54, 313 (2006).Google Scholar
[273] Luo, S., Luo, W., Clewley, J.D., Flanagan, T.B., and Bowman, R.C., Jr., J. Alloys Compounds 231, 473 (1995).Google Scholar
[274] Witham, C.K., Ph.D. Thesis in materials science, California Institute of Technology (2000).Google Scholar
[275] Cahn, J.W., Acta Metall. 9, 795 (1961).Google Scholar
[276] Cahn, J.W. and Hilliard, J.E., J. Chem. Phys. 28, 258 (1958).Google Scholar
[277] Cahn, J.W. and Hilliard, J.E., J. Chem. Phys. 31, 688 (1959).Google Scholar
[278] Langer, J.S., Ann. Phys. 65, 53 (1971).Google Scholar
[279] Wei, Xiong, Hedström, P., Selleby, M., et al., CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 35, 355 (2011).Google Scholar
[280] Langer, J.S., Rev. Mod. Phys. 52, 1 (1980).Google Scholar
[281] Hohenberg, P.C. and Halperin, B.I., Rev. Mod. Phys. 49, 435 (1977).Google Scholar
[282] Mohri, T.., in Alloy Physics, Pfeiler, W., Ed. (Wiley–VCH, Weinheim, 2007), Chapter 10.Google Scholar
[283] Allen, S.M. and Cahn, J.W., Acta Metall. 27, 1085 (1979).Google Scholar
[284] Stauffer, D., Introduction to Percolation Theory (Taylor & Francis, London, 1985).Google Scholar
[285] Khachaturyan, A.G., Phys. Met. Metallog. 13, 493 (1962).Google Scholar
[286] Khachaturyan, A.G., Sov. Phys. Solid State 5, 16 (1963).Google Scholar
[287] Khachaturyan, A.G., Sov. Phys. Solid State 5, 548 (1963).Google Scholar
[288] Khachaturyan, A.G., Prog. Mater. Sci. 22, 1-150 (1978).Google Scholar
[289] Landau, L.D. s 7, 19 (1937). Ibid 7, 627 (1937). Translated and reprinted in L.D. Landau, Collected Papers, Volume 1 (Nauka, Moscow, 1969), pp. 234–252.Google Scholar
[290] Landau, L.D. and Lifshitz, E.M., Statistical Physics (Addison-Wesley, Reading, MA, 1969), Chapters 13, 14.Google Scholar
[291] Kaminsky, E.Z. and Kurdjumov, G.V., Tekh, Zh.. Fiz. 6, 984 (1936).Google Scholar
[292] Kurdjumov, G.V., Miretzskii, V.I., and Stelletskaya, T.I., Tekh, Zh.. Fiz. 2, 1956 (1939).Google Scholar
[293] Patterson, R.L. and Wayman, C.M., Acta Metall. 14, 347 (1966).Google Scholar
[294] Shewmon, P.G., Transformations in Metals (McGraw-Hill, New York, 1969).Google Scholar
[295] Kurdjumov, G.V. and Sachs, G., Z. Phys. 64, 325 (1930).Google Scholar
[296] Nishiyama, Z., Sci. Rep. Tohoku Univ. 23, 637 (1934).Google Scholar
[297] Lieberman, D.S., Weschler, M.S., and Read, T.A., J. Appl. Phys. 26, 473 (1955).Google Scholar
[298] Kurdjumov, G.V. and Khandros, G., Dokl. Nauk. SSSR 66, 211 (1949).Google Scholar
[299] Tong, H.C. and Wayman, C.M., Acta Metall. 23, 209 (1975).Google Scholar
[300] Nishiyama, Z., Martensitic Transformation (Academic Press, New York, 1978).Google Scholar
[301] Bogers, A.J. and Burgers, W.G., Acta Metall. 12, 255 (1964).Google Scholar
[302] Olson, G.B. and Cohen, M., J. Less-Common Metals 28, 107 (1972).Google Scholar
[303] Bracke, L., Kestens, L., and Penning, J., Scripta Metall. 57, 385 (2007).Google Scholar
[304] Wechsler, M.S., Lieberman, D.S., and Read, T.A., Trans. AIME 197, 1503 (1953).Google Scholar
[305] Bowles, J.S. and Mackenzie, J.K., Acta Metall. 2, 129 (1954).Google Scholar
[306] Mackenzie, J.K. and Bowles, J.S., Acta Metall. 2, 138 (1954).Google Scholar
[307] Mackenzie, J.K. and Bowles, J.S., Acta Metall. 5, 137 (1957).Google Scholar
[308] Christian, J.W., J. Inst. Metals 84, 385 (1956).Google Scholar
[309] Born, M., Proc. Cambridge Philos. Soc. 36, 160 (1940).Google Scholar
[310] Zener, C., Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).Google Scholar
[311] Scheil, E.S., Anorg. Allg. Chem. 207, 21 (1932).Google Scholar
[312] Clapp, P.C., Phys. Stat. Sol. B 57, 561 (1973).Google Scholar
[313] Petry, W., Phase Trans. 31, 119 (1991).Google Scholar
[314] Petry, W., Heiming, A., Trampenau, J., et al., Phys. Rev. B 43, 10933 (1991).Google Scholar
[315] Petry, W., Phys, J.. IV 5 C2, 15 (1995).Google Scholar
[316] Grimvall, G., Magyari-Köpe, B., Ozolins, V., and Persson, K.A., Rev. Mod. Phys. 84, 945 (2012).Google Scholar
[317] Trampenau, J., Petry, W., and Herzig, C., Phys. Rev. B 47, 3132 (1993).Google Scholar
[318] Friedel, J., J. Phys. Lett. (Paris) 35, 59 (1974).Google Scholar
[319] Cahn, J.W., Prog. Mater. Sci. 36, 149 (1992).Google Scholar
[320] Mañosa, L., Planes, A., Ortín, J., and Martínez, B., Phys. Rev. B 45, 7633 (1992).Google Scholar
[321] Mañosa, L., Planes, A., Ortín, J., and Martínez, B., Phys. Rev. B 48, 3611 (1993).Google Scholar
[322] Obradó, E., Mañosa, L., and Planes, A., Phys. Rev. B 56, 20 (1997).Google Scholar
[323] Bogdanoff, P. and Fultz, B., Philos. Mag. B 81, 299 (2001).Google Scholar
[324] Schaefer, H.E., Nanoscience (Springer, Heidelberg, 2010).Google Scholar
[325] Fultz, B., Kuwano, H., and Ouyang, H., J. Appl. Phys. 77, 3458 (1995).Google Scholar
[326] Hong, L.B. and Fultz, B., J. Appl. Phys. 79, 3946 (1996).Google Scholar
[327] Yamada, K. and Koch, C.C., J. Mater. Res. 8, 1317 (1993).Google Scholar
[328] Pushkin, M.A., Troyan, V.I., Borisyuk, P.V., Borman, V.D., and Tronin, V.N., J. Nanosci. Nanotechnol. 12, 8676 (2012).Google Scholar
[329] Jensen, K.M.Ø., Juhas, P., Tofanelli, M.A., et al., Nature Commun. 7, 11859 (2016).Google Scholar
[330] Chen, C.C., Zhu, C., White, E.R., et al., Nature 496, 74 (2013).Google Scholar
[331] Chiu, C.Y., Li, Y., Ruan, L., Ye, X., Murray, C.B., and Huang, Y., Nature Chem. 3, 393 (2011).Google Scholar
[332] Yang, Y., Chen, C.-C., Scott, M.C., et al., Nature 542, 75 (2017).Google Scholar
[333] Saita, S. and Maenosono, S., Chem. Mater. 17, 6624 (2005).Google Scholar
[334] Miao, J., Ercius, P., and Billinge, S.J.L., Science 353, aaf2157 (2016).Google Scholar
[335] Bouckaert, L.P., Smoluchowski, R., and Wigner, E., Phys. Rev. 50, 58 (1936).Google Scholar
[336] Tschöpe, A. and Birringer, R., Acta Metall. Mater. 41, 2791 (1993).Google Scholar
[337] Suzuki, K. and Sumiyama, K., Mater. Trans. JIM 36, 188 (1995).Google Scholar
[338] Trampenau, J., Bauszuz, K., Petry, W., and Herr, U., Nanostruct. Mater. 6, 551 (1995).Google Scholar
[339] Fultz, B., Robertson, J.L., Stephens, T.A., Nagel, L.J., and Spooner, S., J. Appl. Phys. 79, 8318 (1996).Google Scholar
[340] Frase, H.N., Nagel, L.J., Robertson, J.L., and Fultz, B., Philos. Mag. B 75, 335 (1997).Google Scholar
[341] Frase, H.N., Fultz, B., and Robertson, J.L., Phys. Rev. B 57, 898 (1998).Google Scholar
[342] Papandrew, A.B., Yue, A.F., Fultz, B., et al., Phys. Rev. B 69, 144301 (2004).Google Scholar
[343] Fultz, B., Ahn, C.C., Alp, E.E., Sturhahn, W., and Toellner, T.S., Phys. Rev. Lett. 79, 937 (1997).Google Scholar
[344] Bonetti, E., Pasquini, L., Sampaolesi, E., Deriu, A., and Cicognani, G., J. Appl. Phys. 88, 4571 (2000).Google Scholar
[345] Frase, H.N., Nagel, L.J., Robertson, J.L., and Fultz, B., in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, E. Ma, B. Fultz, R. Shull, J. Morral, and P. Nash, Eds. (TMS, Warrendale, PA, 1997), p. 125.Google Scholar
[346] Cuenya, B.R., Naitabdi, A., Croy, J., et al., Phys. Rev. B 76, 195422 (2007).Google Scholar
[347] Cuenya, B.R., Keune, W., Peters, R., et al., Phys. Rev. B 77, 165410 (2008).Google Scholar
[348] Tamura, A., Higeta, H., and Ichinokawa, T., J. Phys. C 15, 4975 (1982).Google Scholar
[349] Tamura, A. and Ichinokawa, T., J. Phys. C 16, 4779 (1983).Google Scholar
[350] Tamura, A., Higeta, H., and Ichinokawa, T., J. Phys. C 16, 1585 (1983).Google Scholar
[351] Hansen, M.F., Koch, C.B., and Mørup, S., Phys. Rev. B 62, 1124 (2000).Google Scholar
[352] Bedanta, S. and Kleemann, W., J. Phys. D Appl. Phys. 42, 013001 (2009).Google Scholar
[353] Mørup, S., Hansen, M.F., and Frandsen, C., Beilstein J. Nanotechnol. 1, 182 (2010).Google Scholar
[354] Bozorth, R.M., Ferromagnetism (Van Nostrand, New York, 1951).Google Scholar
[355] Ruderman, M.A. and Kittel, C., Phys. Rev. 96, 99 (1954).Google Scholar
[356] Kasuya, T., Prog. Theor. Phys. 16, 45 (1956).Google Scholar
[357] Yosida, K., Phys. Rev. 106, 893 (1957).Google Scholar
[358] Goodenough, J.B., J. Phys. Chem. Solids 6, 287 (1958).Google Scholar
[359] Kanamori, J., J. Phys. Chem. Solids 10, 87 (1959).Google Scholar
[360] Anderson, P.W., Solid State Physics, Volume 14, F. Seitz and D. Turnbull, Eds. (Academic Press, New York, 1963), p. 99.Google Scholar
[361] Goodenough, J.B., Scholarpedia 3, 7382 (2008).Google Scholar
[362] Dzyaloshinskii, I., J. Phys. Chem. Solids 4, 241 (1958).Google Scholar
[363] Moriya, T., Phys. Rev. Lett. 4, 228 (1960).Google Scholar
[364] Moriya, T., Phys. Rev. 120, 91 (1960).Google Scholar
[365] Yu, X., Mostovoy, M., Tokunaga, Y., Zhang, W., et al., Proc. Natl. Acad. Sci. USA 109, 8856 (2012).Google Scholar
[366] Yu, X.Z., Onose, Y., Kanazawa, N., et al., Nature 465, 901 (2010).Google Scholar
[367] Bauer, A., Garst, M, and Pfleiderer, C., Phys. Rev. Lett. 110, 177207 (2013).Google Scholar
[368] Kay, H.F. and Vousden, P., Philos. Mag. 40, 1019 (1949).Google Scholar
[369] Sanchez, J.M., de Fontaine, D., and Teitler, W., Phys. Rev. B 26, 1465 (1982).Google Scholar
[370] Sanchez, J.M. and de Fontaine, D., Phys. Rev. B 21, 216 (1980).Google Scholar
[371] Woloszyn, M., Stauffer, D., and Kulakowski, K., Eur. Phys. J. B 57, 331 (2007).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.027
Available formats
×