from Part II - The Atomic Origins of Thermodynamics and Kinetics
Published online by Cambridge University Press: 24 April 2020
This chapter explains why atom jumps with a vacancy mechanism are not random, even if the vacancy itself moves by random walk. In an alloy with chemical interactions strong enough to cause a phase transformation, the vacancy frequently resides at energetically favorable locations, so any assumption of random walk can be seriously in error. When materials with different diffusivities are brought into contact, their interface is displaced with time because the fluxes of atoms across the interface are not equal in both directions. Even the meaning of the interface, or at least its position, requires new concepts. An applied field can bias the diffusion process towards a particular direction, and such a bias can also be created by chemical interactions between atoms. When thermal atom diffusion occurs in parallel with atom jumps forced without thermal activation, a steady state can be calculated, but it is not a state of thermodynamic equilibrium. Finally, the venerable statistical mechanics model of diffusion by Vineyard is described.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.