Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T15:29:23.094Z Has data issue: false hasContentIssue false

3 - Using serum biomarkers to diagnose, assess, treat, and predict outcome after pediatric TBI

Published online by Cambridge University Press:  14 May 2010

Vicki Anderson
Affiliation:
University of Melbourne
Keith Owen Yeates
Affiliation:
Ohio State University
Get access

Summary

A biomarker is an objectively measured and evaluated characteristic which is an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention (Group,2001). Physicians in clinical practice routinely use biomarkers to diagnose and assess disease severity, assist in disease prognosis, and evaluate treatment efficacy. Generally, injury and/or cell death results in increased concentrations of a given biomarker, either due to the release of that biomarker from the injured cell (e.g. creatine phosphokinase (CPK) in patients with myocardial infarction) or the lack of excretion of a normally excreted chemical which results in its accumulation (e.g. blood urea nitrogen in patients with renal failure). In some cases, however, a decrease in biomarker concentrations indicates pathology (e.g. haptoglobin in patients with hemolytic anemia).

Development of a clinically acceptable “brain” biomarker has proven much more difficult than the development of biomarkers for other organs. The difficulty is likely due to a combination of anatomic, physiologic, and technical issues. The complexity of the brain and the concomitant complexity of its response to injury have been barriers to development of sensitive and specific brain biomarkers. The presence of the blood–brain barrier which limits the amount and size of the biomarkers that can cross into the serum has also been an important issue. Until recently, technical difficulties had hindered the ability to identify novel candidate biomarkers using proteomics and, as a result, the number of potential biomarkers has been limited.

Type
Chapter
Information
Pediatric Traumatic Brain Injury
New Frontiers in Clinical and Translational Research
, pp. 36 - 53
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, P. D., Ragheb, J., Kanev, P.et al. (2005). Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery, 56, 740–754: discussion 755–756.CrossRefGoogle ScholarPubMed
Akhtar, J. I., Spear, R. M., Senac, M. O., Peterson, B. M. & Diaz, S. M. (2003). Detection of traumatic brain injury with magnetic resonance imaging and S-100B protein in children, despite normal computed tomography of the brain. Pediatric Critical Care Medicine, 4, 322–326.CrossRefGoogle Scholar
Alexander, R., Crabbe, L., Sato, Y., Smith, W. & Bennett, T. (1990). Serial abuse in children who are shaken. American Journal of Diseases in Children, 144, 58–60.Google ScholarPubMed
Anderson, R. E., Hansson, L. O., Nilsson, O., Dijlai-Merzoug, R. & Settergren, G. (2001). High serum S100β levels for trauma patients without head injuries. Neurosurgery, 48, 1255–1258: discussion 1258–1260.Google Scholar
Bandyopadhyay, S., Hennes, H., Gorelick, M. H., Wells, R. G. & Walsh-Kelly, C. M. (2005). Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. Academic Emergency Medicine, 12, 732–738.CrossRefGoogle ScholarPubMed
Bayir, H., Adelson, P., Wisnivesky, S.et al. (2009). Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Critical Care Medicine, in press.CrossRefGoogle ScholarPubMed
Bazarian, J. J. 1R01HD0518650–01A2 – Detecting axonal damage after mild TBI.
Bazarian, J. J., Zemlan, F. P., Mookerjee, S. & Stigbrand, T. (2006). Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Injury, 20, 759–765.CrossRefGoogle ScholarPubMed
Beers, S. R., Berger, R. P. & Adelson, P. D. (2007). Neurocognitive outcome and serum biomarkers in inflicted versus non-inflicted traumatic brain injury in young children. Journal of Neurotrauma, 24, 97–105.CrossRefGoogle ScholarPubMed
Berger, R. (2003). Biomarkers or neuroimaging in central nervous system injury: will the real “gold standard” please stand up?Pediatrics Critical Care Medicine, 4, 391–392.CrossRefGoogle ScholarPubMed
Berger, R. P. (2006). The use of serum biomarkers to predict outcome after traumatic brain injury in adults and children. Journal of Head Trauma Rehabilitation, 21, 315–333.CrossRefGoogle ScholarPubMed
Berger, R. P., Adelson, P. D., Pierce, M. C., Dulani, T., Cassidy, L. D. & Kochanek, P. M. (2005). Serum neuron-specific enolase, S100β, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. Journal of Neurosurgery, 103, 61–68.Google Scholar
Berger, R. P., Adelson, P. D., Richichi, R. & Kochanek, P. M. (2006a). Serum biomarkers after traumatic and hypoxemic brain injuries: insight into the biochemical response of the pediatric brain to inflicted brain injury. Developmental Neuroscience, 28, 327–335.CrossRefGoogle ScholarPubMed
Berger, R. P., Dulani, T., Adelson, P. D., Leventhal, J. M., Richichi, R. & Kochanek, P. M. (2006b). Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics, 117, 325–332.CrossRefGoogle ScholarPubMed
Berger, R. P., Beers, S. R., Richichi, R., Wiesman, D. & Adelson, P. D. (2007). Serum biomarker concentrations and outcome after pediatric traumatic brain injury. Journal of Neurotrauma, 24, 1793–1801.CrossRefGoogle ScholarPubMed
Berger, R. P., Ta'Asan, S., Rand, A., Lokshin, A. & Kochanek, P. (2009). Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury. Pediatric Research, 65, 97–102.CrossRefGoogle ScholarPubMed
Biberthaler, P., Mussack, T. & Wiedemann, E. (2001). Elevated serum levels of S-100B reflect the extent of brain injury in alcohol intoxicated patients after mild head trauma. Shock, 16, 97–101.CrossRefGoogle ScholarPubMed
Biberthaler, P., Linsenmeier, U. & Pfeifer, K. J. (2006). Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock, 25, 446–453.CrossRefGoogle ScholarPubMed
Blyth, B., Bazarian, J. & Shaw, G. (2008). Differential patterns of release of UCHL-1 and PNFH into serum after severe traumatic brain injury. Journal of Neurotrauma, 25, 862.Google Scholar
Brenner, D., Elliston, C., Hall, E. & Berdon, W. (2001). Estimated risks of radiation-induced fatal cancer from pediatric CT. American Journal of Roentgenology, 176, 289–296.CrossRefGoogle ScholarPubMed
Brody, A. S., Frush, D. P., Huda, W. & Brent, R. L. (2007). Radiation risk to children from computed tomography. Pediatrics, 120, 677–682.CrossRefGoogle ScholarPubMed
Bullock, R., Zauner, A., Woodward, J. J.et al. (1998). Factors affecting excitatory amino acid release following severe human head injury. Journal of Neurosurgery, 89, 507–518.CrossRefGoogle ScholarPubMed
Buttram, S. D., Wisniewski, S. R., Jackson, E. K.et al. (2007). Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. Journal of Neurotrauma, 24, 1707–1718.CrossRefGoogle ScholarPubMed
Cardali, S. & Maugeri, R. (2006). Detection of aII-spectrin and breakdown products in humans after severe traumatic brain injury. Journal of Neurosurgical Science, 50, 25–31.Google ScholarPubMed
Chatfield, D. A., Zemlan, F. P., Day, D. J. & Menon, D. K. (2002). Discordant temporal patterns of S100beta and cleaved tau protein elevation after head injury: a pilot study. British Journal of Neurosurgery, 16, 471–476.CrossRefGoogle ScholarPubMed
Conti, A., Sanchez-Ruiz, Y., Bachi, A.et al. (2004). Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers. Journal of Neurotrauma, 21, 854–863.CrossRefGoogle ScholarPubMed
Durham, S. R., Clancy, R. R., Leuthardt, E. (2000). CHOP Infant Coma Scale (“Infant Face Scale”): a novel coma scale for children less than two years of age. Journal of Neurotrauma, 17, 729–737.CrossRefGoogle Scholar
Ekegren, T., Hanrieder, J. & Bergquist, J. (2008). Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research. Journal of Mass Spectrometry, 43, 559–571.CrossRefGoogle ScholarPubMed
Fridriksson, T., Kini, N., Walsh-Kelly, C. & Hennes, H. (2000). Serum neuron-specific enolase as a predictor of intracranial lesions in children with head trauma: a pilot study. Academic Emergency Medicine, 7, 816–820.CrossRefGoogle ScholarPubMed
Gao, W. M., Chadha, M. S., Berger, R. P.et al. (2007). Biomarkers and diagnosis; a gel-based proteomic comparison of human cerebrospinal fluid between inflicted and non-inflicted pediatric traumatic brain injury. Journal of Neurotrauma, 24, 43–53.CrossRefGoogle Scholar
Gazzolo, D., Michetti, F., Bruschettini, M.et al. (2003). Pediatric concentrations of S100β protein in blood: age- and sex-related changes. Clinical Chemistry, 49, 967–970.CrossRefGoogle ScholarPubMed
Group, B. D. W. (2001). Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacological Therapy, 69, 89–95.Google Scholar
Hans, P., Born, J. D., Chapelle, J. P. & Milbouw, G. (1983). Creatine kinase isoenzymes in severe head injury. Journal of Neurosurgery, 58, 689–692.CrossRefGoogle ScholarPubMed
Haqqani, A. S., Hutchison, J. S., Ward, R. & Stanimirovic, D. B. (2007). Biomarkers and diagnosis: protein biomarkers in serum of pediatric patients with severe traumatic brain injury identified by ICAT-LC-MS/MS. Journal of Neurotrauma, 24, 54–74.CrossRefGoogle ScholarPubMed
Harwood, S. J., Catrou, P. G. & Cole, G. W. (1978). Creatine phosphokinase isoenzyme fractions in the serum of a patient struck by lightning. Archives of Internal Medicine, 138, 645–646.CrossRefGoogle ScholarPubMed
Ingebrigtsen, T. & Romner, B. (1996). Serial S-100 protein serum measurements related to early magnetic resonance imaging after minor head injury. Case report. Journal of Neurosurgery, 85, 945–948.CrossRefGoogle ScholarPubMed
Ingebrigtsen, T., Waterloo, K., Jacobsen, E. A., Langbakk, B. & Romber, B. (1999). Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery, 45, 468–475; discussion 475–476.CrossRefGoogle ScholarPubMed
Ingebrigtsen, T., Romner, B., Marup-Jensen, S.et al. (2000). The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Injury, 14, 1047–1055.CrossRefGoogle ScholarPubMed
Jenny, C., Hymel, K. P., Ritzen, A., Reinert, S. E. & Hay, T. C. (1999). Analysis of missed cases of abusive head trauma. Journal of the American Medical Association, 281, 621–626.CrossRefGoogle ScholarPubMed
Karkela, J., Bock, E. & Kaukinen, S. (1993). CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. Journal of Neurological Science, 116, 100–109.CrossRefGoogle ScholarPubMed
Karpman, R. R., Weinstein, P. R., Finley, P. R. & Karst-Sabin, B. (1981). Serum CPK isoenzyme BB as an indicator of brain tissue damage following head injury. Journal of Trauma, 21, 148–151.CrossRefGoogle ScholarPubMed
Kirpalani, H. & Nahmias, C. (2008). Radiation risk to children from computed tomography. Pediatrics, 121, 449–450.CrossRefGoogle ScholarPubMed
Kobeissy, F., Ottens, A., Zhang, Z.et al. (2006). Differential proteomic analysis of traumatic brain injury biomarker study using CAX-PAGE/RPLC-MSMS method. Cellular Proteomics, 5, 1887–1898.CrossRefGoogle Scholar
Kochanek, P. M. & Safar, P. J. (2003). Therapeutic hypothermia for severe traumatic brain injury. Journal of the American Medical Association, 289, 3007–3009.CrossRefGoogle ScholarPubMed
Kochanek, P. M., Clark, R. S., Ruppel, R. A.et al. (2000). Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatric Critical Care Medicine, 1, 4–19.CrossRefGoogle Scholar
Kochanek, A. R., Kline, A. E., Gao, W. M.et al. (2006). Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Developmental Neuroscience, 28, 410–419.CrossRefGoogle ScholarPubMed
Laskey, A. (1998). Shaken baby syndrome: a missed diagnosis. 1998National Shaken Baby Conference, Salt Lake City.Google Scholar
Lewandrowski, K., Chen, A. & Januzzi, J. (2002). Cardiac markers for myocardial infarction. A brief review. American Journal of Clinical Pathology, 118 Suppl, S93–S99.Google ScholarPubMed
Lima, J. E., Takayanagui, O. M., Garcia, L. V. & Leite, J. P. (2004). Use of neuron-specific enolase for assessing the severity and outcome in patients with neurological disorders. Brazilian Journal of Medical and Biological Research, 37, 19–26.CrossRefGoogle ScholarPubMed
Liu, M. C., Akle, V., Zheng, W.et al. (2006). Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochemical Journal, 394, 715–725.CrossRefGoogle ScholarPubMed
Liu, M., Zheng, W., Akinyi, L.et al. (2007). Ubiquitin-c-terminal hydrolase as a biomarker for ischemic and traumatic brain injury. The 25th Annual National Neurotrauma Society Symposium, Kansas City, MO.Google Scholar
Lynch, J. R., Blessing, R., White, W. D., Grocott, H. P., Newman, M. F. & Laskowitz, D. T. (2004). Novel diagnostic test for acute stroke. Stroke, 35, 57–63.CrossRefGoogle ScholarPubMed
Ma, M., Lindsell, C. J., Rosenberry, C. M., Shaw, G. J. & Zemlan, F. P. (2008). Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. American Journal of Emergency Medicine, 26, 763–768.CrossRefGoogle Scholar
McCann, C. J., Glover, B. M., Menown, I. B.et al. (2009). Prognostic value of a multimarker approach for patients presenting to hospital with acute chest pain. American Journal of Cardiology, 103, 22–28.CrossRefGoogle ScholarPubMed
McIntosh, T. (1993). Novel pharmacologic therapies in the treatment of experimental traumatic brain injury. Journal of Neurotrauma, 10, 215–261.CrossRefGoogle ScholarPubMed
McIntyre, L. A., Fergusson, D. A., Herbert, P. C., Moher, D. & Hutchison, J. S. (2003). Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA, 289, 2992–2999.CrossRefGoogle ScholarPubMed
Morris, G. F., Bullock, R., Marshall, S. B., Marmarou, A., Maas, A. & Marshall, L. F. (1999). Failure of the competitive N-methyl-d-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. Journal of Neurosurgery, 91, 737–743.CrossRefGoogle ScholarPubMed
Muller, K., Townend, W., Biasca, N.et al. (2007). S100β serum level predicts computed tomography findings after minor head injury. Journal of Trauma, 62, 1452–1456.CrossRefGoogle Scholar
Mussack, T., Biberthaler, P., Wiedemann, E.et al. (2000). S-100b as a screening marker of the severity of minor head trauma (MHT) – a pilot study. Acta Neurochirurgica, 76 Suppl, 393–396.Google ScholarPubMed
Mussack, T., Biberthaler, P., Kanz, K. G.et al. (2002). Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. Shock, 18, 395–400.CrossRefGoogle ScholarPubMed
Narayan, R. K., Michel, M. E., Ansell, B.et al. (2002). Clinical trials in head injury. Journal of Neurotrauma, 19, 503–557.CrossRefGoogle ScholarPubMed
Nygren De Boussard, C., Fredman, P., Lundin, A., Andersson, K., Edman, G. & Borg, J. (2004). S100 in mild traumatic brain injury. Brain Injury, 18, 671–683.CrossRefGoogle ScholarPubMed
Oli, M., Akinyi, L., Mo, J.et al. (2007). Development and Validation of Novel Brain Biomarker Assays. St. Pete Beach: Advanced Technology for Combat Casualty Care (ATACCC).Google Scholar
Ottens, A. K., Kobeissy, F. H., Fuller, B. F.et al. (2007). Novel neuroproteomic approaches to studying traumatic brain injury. Progress in Brain Research, 161, 401–418.CrossRefGoogle ScholarPubMed
Papa, L., Oli, M., Akinyi, L.et al. (2008). Levels of UCH-L1 in human CSF and outcome following severe traumatic brain injury. Journal of Neurotrauma, 25, 854–935.Google Scholar
Pelinka, L. E., Toegel, E., Mauritz, W. & Redl, H. (2003). Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock, 19, 195–200.CrossRefGoogle ScholarPubMed
Pelinka, L. E., Kroepfl, A., Leixnering, M., Buchinger, W., Raabe, A. & Redl, H. (2004a). GFAP versus S100β in serum after traumatic brain injury: relationship to brain damage and outcome. Journal of Neurotrauma, 21, 1553–1561.CrossRefGoogle Scholar
Pelinka, L. E., Kroepfl, A., Schmidhammer, R.et al. (2004b). Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. Journal of Trauma, 57, 1006–1012.CrossRefGoogle ScholarPubMed
Petzold, A., Green, A. J., Keir, G.et al. (2002). Role of serum S100β as an early predictor of high intracranial pressure and mortality in brain injury: a pilot study. Critical Care Medicine, 30, 2705–2710.CrossRefGoogle Scholar
Pfenninger, J. & Santi, A. (2002). Severe traumatic brain injury in children – are the results improving?Swiss Medical Weekly, 132, 116–120.Google ScholarPubMed
Piazza, O., Storti, M. P., Cotena, S.et al. (2007). S100β is not a reliable prognostic index in paediatric TBI. Pediatric Neurosurgery, 43, 258–264.CrossRefGoogle Scholar
Pike, B. R., Zhao, X., Newcomb, J. K., Posmantur, R. M., Wang, K. K. & Hayes, R. L. (1998). Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport, 9, 2437–2442.CrossRefGoogle ScholarPubMed
Pike, B. R., Flint, J., Dutta, S., Johnson, E., Wang, K. K. & Hayes, R. L. (2001). Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. Journal of Neurochemistry, 78, 1297–1306.CrossRefGoogle ScholarPubMed
Pike, B. R., Flint, J., Dave, J. R.et al. (2004). Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. Journal of Cerebral Blood Flow Metabolism, 24, 98–106.CrossRefGoogle ScholarPubMed
Pineda, J. A., Lewis, S. B., Valadka, A. B.et al. (2007). Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. Journal of Neurotrauma, 24, 354–366.CrossRefGoogle ScholarPubMed
Portela, L. V., Tort, A. B., Schaf, D. V.et al. (2002). The serum S100β concentration is age dependent. Clinical Chemistry, 48, 950–952.Google Scholar
Rabow, L. & Hedman, G. (1985). Creatine kinaseBB-activity after head trauma related to outcome. Acta Neurochirurgica (Wien), 76, 137–139.CrossRefGoogle Scholar
Reynolds, M. A., Kirchich, H. J., Dahlen, J. R.et al. (2003). Early biomarkers of stroke. Clinical Chemistry, 49, 1733–1739.CrossRefGoogle ScholarPubMed
Ringger, N. C., O'Steen, B. E., Brabham, J. G.et al. (2004). A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. Journal of Neurotrauma, 21, 1443–1456.CrossRefGoogle ScholarPubMed
Robicsek, S., Gabrielli, A., Layon, A.et al. (2007). BANDITS: a novel clinical platform to validate the utility of potential brain injury biomarkers. Journal of Neurotrauma, 24, 1234.Google Scholar
Romner, B. & Ingebrigtsen, T. (2001). High serum S100β levels for trauma patients without head injuries. Neurosurgery, 49, 1490: author reply 1492–1493.CrossRefGoogle Scholar
Romner, B., Ingebrigtsen, T., Kongstad, P. & Borgesen, S. E. (2000). Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. Journal of Neurotrauma, 17, 641–647.CrossRefGoogle ScholarPubMed
Ross, S. A., Cunningham, R. T., Johnston, C. F. & Rowlands, B. J. (1996). Neuron-specific enolase as an aid to outcome prediction in head injury. British Journal of Neurosurgery, 10, 471–476.CrossRefGoogle ScholarPubMed
Rothoerl, R. D. & Woertgen, C. (2001). High serum S100β levels for trauma patients without head injuries. Neurosurgery, 49, 1490–1491: author reply 1492–1493.CrossRefGoogle Scholar
Rubin, D. M., Christian, C. W., Bilaniuk, L. T., Zazyczny, K. A. & Durbin, D. R. (2003). Occult head injury in high-risk abused children. Pediatrics, 111, 1382–1386.CrossRefGoogle ScholarPubMed
Ruppel, R. A., Kochanek, P. M., Adelson, P. D.et al. (2001). Excitatory amino acid concentrations in ventricular cerebrospinal fluid after severe traumatic brain injury in infants and children: the role of child abuse. Journal of Pediatrics, 138, 18–25.CrossRefGoogle ScholarPubMed
Savola, O., Pyhtinen, J., Leino, T. K., Siitonen, S., Niemela, O. & Hillbom, M. (2004). Effects of head and extracranial injuries on serum protein S100β levels in trauma patients. Journal of Trauma, 56, 1229–1234: discussion 1234.CrossRefGoogle Scholar
Scarfo, G. B., Mariottini, A., Tomaccini, D. & Palma, L. (1989). Growing skull fractures: progressive evolution of brain damage and effectiveness of surgical treatment. Childs Nervous System, 5, 163–167.CrossRefGoogle ScholarPubMed
Shaw, G. J., Jauch, E. C. & Zemlan, F. P. (2002). Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Annals of Emergency Medicine, 39, 254–257.CrossRefGoogle ScholarPubMed
Skogseid, I. M., Nordby, H. K., Urdal, P., Paus, E. & Lilleaas, F. (1992). Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochirurgica (Wien), 115, 106–111.CrossRefGoogle ScholarPubMed
Sotgiu, S., Zanda, B., Marchetti, B.et al. (2006). Inflammatory biomarkers in blood of patients with acute brain ischemia. European Journal of Neurology, 13, 505–513.CrossRefGoogle ScholarPubMed
Spinella, P. C., Dominguez, T., Drott, H. R.et al. (2003). S-100beta protein-serum levels in healthy children and its association with outcome in pediatric traumatic brain injury. Critical Care Medicine, 31, 939–945.CrossRefGoogle ScholarPubMed
Thomas, D. G., Palfreyman, J. W. & Ratcliffe, J. G. (1978). Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet, 1, 113–115.CrossRefGoogle ScholarPubMed
Thomas, D. G., Hoyle, N. R. & Seeldrayers, P. (1984). Myelin basic protein immunoreactivity in serum of neurosurgical patients. Journal of Neurology, Neurosurgery and Psychiatry, 47, 173–175.CrossRefGoogle ScholarPubMed
Tiainen, M., Roine, R. O., Pettila, V. & Takkunen, O. (2003). Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke, 34, 2881–2886.CrossRefGoogle ScholarPubMed
Vaagenes, P., Safar, P., Diven, W.et al. (1988). Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: markers of damage and predictors of outcome. Journal of Cerebral Blood Flow Metabolism, 8, 262–275.CrossRefGoogle ScholarPubMed
Vaagenes, P., Mullie, A., Fodstad, D. T., Abramson, N. & Safar, P. (1994). The use of cytosolic enzyme increase in cerebrospinal fluid of patients resuscitated after cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. American Journal of Emergency Medicine, 12, 621–624.Google ScholarPubMed
Vazquez, M. D., Sanchez-Rodriguez, F., Osuna, E.et al. (1995). Creatine kinase BB and neuron-specific enolase in cerebrospinal fluid in the diagnosis of brain insult. American Journal of Forensic Medical Pathology, 16, 210–214.CrossRefGoogle Scholar
Vos, P. E., Lamers, K. J., Hendriks, J. C.et al. (2004). Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology, 62, 1303–1310.CrossRefGoogle ScholarPubMed
Wang, K. K., Ottens, A. K., Liu, M. C.et al. (2005). Proteomic identification of biomarkers of traumatic brain injury. Expert Reviews in Proteomics, 2, 603–614.CrossRefGoogle ScholarPubMed
Xiong, Z., O'Hanlon, D., Becker, L. E., Roder, J., MacDonald, J. F. & Marks, A. (2000). Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100β null mice. Experimental Cell Research, 257, 281–289.CrossRefGoogle Scholar
Yamazaki, Y., Yada, K., Morii, S., Kitahara, T. & Ohwada, T. (1995). Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surgical Neurology, 43, 267–270: discussion 270–271.CrossRefGoogle ScholarPubMed
Zhang, J., Sokal, I., Peskind, E. R.et al. (2008). CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology, 129, 526–529.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×