Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T15:11:33.320Z Has data issue: false hasContentIssue false

5 - Advanced neuroimaging techniques in children with traumatic brain injury

Published online by Cambridge University Press:  14 May 2010

Vicki Anderson
Affiliation:
University of Melbourne
Keith Owen Yeates
Affiliation:
Ohio State University
Get access

Summary

Pediatric traumatic brain injury remains a major public health problem. Fortunately, the advent of several neuroimaging techniques has improved our ability to better diagnose and treat affected children. Because intensive care therapy has resulted in lowered mortality and morbidity, attention is also focusing on issues related to brain recovery and reorganization. It is likely that, in the future, imaging may better define the relation between structural and functional deficits and approaches will be developed to guide treatment paradigms. In this review, we examine four imaging methods that are increasingly used for the assessment of pediatric brain injury. Susceptibility weighted imaging is a 3-D high-resolution magnetic resonance imaging technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury. Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and functions from multiple brain regions and provides sensitive, non-invasive assessment of neurochemical alterations that offers early prognostic information regarding outcome. Diffusion weighted imaging is based on differences in diffusion of water molecules within the brain and is sensitive in the early detection of ischemic injury. Diffusion tensor imaging is a form of diffusion weighted imaging and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in human brain and is useful in identifying white matter abnormalities after diffuse axonal injury.

Type
Chapter
Information
Pediatric Traumatic Brain Injury
New Frontiers in Clinical and Translational Research
, pp. 68 - 93
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessandri, B., Samsam, R., Corwin, F., Fatouros, P., Young, H. F. & Bucclock, R. M. (2000). Acute and late changes in N-acetyl-aspartate following diffuse axonal injury in rats: an MRI spectroscopy and microdialysis study. Neurological Research, 22, 705–712.CrossRefGoogle ScholarPubMed
Arfanakis, K., Haughton, V. M., Carew, J. D., Rogers, B. P., Dempsey, R. J. & Meyerand, M. E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. American Journal of Neuroradiology, 23, 794–802.Google ScholarPubMed
Ashwal, S., Holshouser, B. A., Shu, S. K.et al. (2000). Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatric Neurology, 23, 114–125.CrossRefGoogle ScholarPubMed
Ashwal, S., Holshouser, B., Tong, K.et al. (2004a). Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatric Research, 56, 630–638.CrossRefGoogle ScholarPubMed
Ashwal, S., Holshouser, B. A., Tong, K.et al. (2004b). Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. Journal of Neurotrauma, 21, 1539–1552.CrossRefGoogle ScholarPubMed
Ashwal, S., Babikian, T., Gardner-Nichols, J., Freier, M. C., Tong, K. A., & Holshouser, B. A. (2006a). Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. Archives Physical and Medical Rehabilitation, 87(12), Suppl. 2, S50–S58.CrossRefGoogle ScholarPubMed
Ashwal, S., Holshouser, B. A. & Tong, K. A. (2006b). Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury. Developmental Neuroscience, 28(4–5), 309–326.CrossRefGoogle ScholarPubMed
Barker, P. B., Soher, B. J., Blackband, S. J., Chatham, J. C., Mathews, V. P. & Bryan, R. N. (1993). Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomedicine, 6, 89–94.CrossRefGoogle ScholarPubMed
Beaulieu, C., D'arcueil, H., Hedehus, M., Crepigny, A., Kastrup, A. & Moseley, M. E. (1999). Diffusion-weighted magnetic resonance imaging: theory and potential applications to child neurology. Seminars in Pediatrics, 6, 87–100.CrossRefGoogle ScholarPubMed
Biousse, V., Suh, D. Y., Newman, N. J., Davis, P. C., Mapstone, T. & Lambert, S. R. (2002). Diffusion-weighted magnetic resonance imaging in shaken baby syndrome. American Journal of Ophthalmology, 133, 249–255.CrossRefGoogle ScholarPubMed
Blackman, J. A., Rice, S. A., Matsumoto, J. A.et al. (2003). Brain imaging as a predictor of early functional outcome following traumatic brain injury in children, adolescents, and young adults. Journal of Head Trauma Rehabilitation, 18, 493–503.CrossRefGoogle Scholar
Brenner, T., Freier, M. C., Holshouser, B. A., Burley, T. & Ashwal, S. (2003). Predicting neuropsychologic outcome after traumatic brain injury in children. Pediatric Neurology, 28, 104–114.CrossRefGoogle ScholarPubMed
Bullock, R., Zauner, A., Woodward, J. J.et al. (1998). Factors affecting excitatory amino acid release following severe head injury. Journal of Neurosurgery, 89, 507–518.CrossRefGoogle Scholar
Bydder, G. M., Rutherford, M. A. & Cowan, F. M. (2001). Diffusion-weighted imaging in neonates. Childs Nervous System, 17, 190–194.CrossRefGoogle ScholarPubMed
Cady, E. B., Penrice, J., Amess, P. N.et al. (1996). Lactate, N-acetylaspartate, choline and creatine concentrations and spin-spin relation in thalamic and occipito-parietal regions of developing human brain. Magnetic Resonance Medicine, 36, 878–886.CrossRefGoogle Scholar
Cecil, K. M., Hills, E. C., Sandel, M. E.et al. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. Journal of Neurosurgery, 88, 795–801.CrossRefGoogle ScholarPubMed
Chan, Y. L., Chu, W. C., Wong, G. W. & Yeung, D. K. (2003). Diffusion-weighted MRI in shaken baby syndrome. Pediatric Radiology, 33, 574–547.CrossRefGoogle ScholarPubMed
Danielsen, E. R., Michaelis, T. & Ross, B. D. (1995). Three methods of calibration in quantitative proton MR spectroscopy. Journal of Magnetic Resonance, 106, 287–291.CrossRefGoogle ScholarPubMed
Danielsen, E. R. & Ross, B. (1999). Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases. New York: Marcel Dekker.Google Scholar
Field, A. S., Hasan, K., Jellison, B. J., Arfanakis, K. & Alexander, A. L. (2003). Diffusion tensor imaging in an infant with traumatic brain swelling. American Journal of Neuroradiology, 24, 1461–1464.Google Scholar
Frahm, J., Bruhn, H., Gyngell, M. L., Merboldt, K. D., Hanicke, W. & Sauter, R. (1989). Localized NMR spectroscopy in different regions of the human brain in vivo: relaxation times and concentration of cerebral metabolites. Magnetic Resonance Medicine, 11, 47–63.CrossRefGoogle ScholarPubMed
Galloway, N. R., Tong, K. A., Ashwal, S., Oyoyo, U. & Obenaus, A. (2008). Diffusion-weighted imaging improves outcome prediction in pediatric traumatic brain injury. Journal of Neurotrauma, 25, 1153–1162.CrossRefGoogle ScholarPubMed
Garnett, M. R., Blamire, A. M., Corkill, R. G., Cadoux-Hudson, T. A., Rajagopalan, B. & Stylet, P. (2000). Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain, 123, 2046–2054.CrossRefGoogle ScholarPubMed
Garnett, M. R., Corkill, R. G., Blamire, A. M.et al. (2001). Altered cellular metabolism following traumatic brain injury: a magnetic resonance spectroscopy study. Journal of Neurotrauma, 18, 231–240.CrossRefGoogle ScholarPubMed
Geddes, J. F., Hackshaw, A. K., Vowles, G. H., Nickols, C. D. & Whitwell, H. L. (2001a). Neuropathology of inflicted head injury in children. I. Pattern of brain damage. Brain, 124, 1290–1298.CrossRefGoogle Scholar
Geddes, J. F., Vowles, G. H., Hackshaw, A. K., Nickols, C. D., Scott, I. S. & Whitwell, H. L. (2001b). Neuropathology of inflicted head injury in children. II. Microscopic brain injury in infants. Brain, 124, 1299–1306.CrossRefGoogle ScholarPubMed
Govindaraju, V., Gauger, G. E., Manley, G. T., Ebel, A., Meeker, M. & Maudsley, A. A. (2004). Volumetric proton spectroscopic imaging of mild traumatic brain injury. American Journal of Neuroradiology, 25, 730–737.Google ScholarPubMed
Grados, M. A., Slomine, B. S., Gerring, J. P., Vasa, R., Bryan, N. & Denckla, M. B. (2001). Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 350–358.CrossRefGoogle ScholarPubMed
Haacke, E. M., Xu, Y., Cheng, Y. C. & Reichenbach, J. R. (2004). Susceptibility weighted imaging (SWI), Magnetic Resonance Medicine, 52, 612–618.CrossRefGoogle Scholar
Hergan, , K., Schaefer, P. W., Sorensen, A. G., Gonzalez, R. G. & Huisman, T. A. G. M. (2002). Diffusion-weighted MRI in diffuse axonal injury of the brain. European Radiology, 12, 2536–2541.CrossRefGoogle Scholar
Holshouser, B. A., Ashwal, S., Luh, G. Y.et al. (1997). Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology, 202, 487–496.CrossRefGoogle Scholar
Holshouser, B. A., Ashwal, S. & Tong, K. A. (2005). Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. American Journal of Neuroradiology, 26, 1276–1285.Google ScholarPubMed
Horska, A., Kaufmann, W., Brant, L. J., Naidu, S., Harris, J. C. & Barker, P. B. (2002). In vivo quantitative proton MRSI study of brain development from childhood to adolescence. Journal of Magnetic Resonance Imaging, 15, 137–143.CrossRefGoogle ScholarPubMed
Hou, D. J., Tong, K. A., Ashwal, S.et al. (2007). Diffusion-weighted magnetic resonance imaging improves outcome prediction in adult traumatic brain injury. Journal of Neurotrauma, 24, 1558–1569.CrossRefGoogle ScholarPubMed
Huisman, T. A. (2003). Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. European Radiology, 13, 2283–2297.CrossRefGoogle ScholarPubMed
Huisman, T. A., Sorensen, A. G., Hergan, K., Gonzalez, R. G. & Schaefer, P. W. (2003). Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. Journal of Computer Assisted Tomography, 27, 5–11.CrossRefGoogle ScholarPubMed
Huisman, T. A., Schwamm, L. H., Schaefer, P. W.et al. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. American Journal of Neuroradiology, 25, 370–376.Google ScholarPubMed
Hunter, J. V., Thornton, R. J., Wang, Z. J.et al. (2005). Late proton MR spectroscopy in children after traumatic brain injury: correlation with cognitive outcomes. American Journal of Neuroradiology, 26, 482–488.Google ScholarPubMed
Huppi, P. S. (2001). MR imaging and spectroscopy of brain development. In A. James Barkovich, A. Robert and R. A. Zimmerman, eds. Pediatric MR Neuroimaging, Magnetic Resonance Imaging Clinics of North America, pp. 1–18.
Huppi, P. S., Maier, S. E., Peled, S., Zientara, G. P., Barnes, P. D. & Jolesz, F. A. (1998). Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatric Research, 44, 584–590.CrossRefGoogle ScholarPubMed
Jones, D. K., Dardis, R., Ervine, M.et al. (2000). Cluster analysis of diffusion tensor magnetic resonance images in human head injury. Neurosurgery, 47, 306–317.CrossRefGoogle ScholarPubMed
Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E. & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport, 10, 2817–2821.CrossRefGoogle ScholarPubMed
Kreis, R., Ernst, T. & Ross, B. D. (1993). Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magnetic Resonance Medicine, 30, 424–437.CrossRefGoogle ScholarPubMed
Kreis, R., Hofmann, L., Kuhlmann, B., Boesch, C., Bossi, E. & Huppi, P. S. (2002). Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magnetic Resonance Medicine, 48, 949–958.CrossRefGoogle ScholarPubMed
Macmillan, C. S., Wild, J. M., Wardlaw, J. M., Andrews, P. J., Marshall, I. & Easton, V. J. (2002). Traumatic brain injury and subarachnoid hemorrhage: in vivo occult pathology demonstrated by magnetic resonance spectroscopy may not be “ischaemic.” A primary study and review of the literature. Acta Neurochirurgica (Wien), 144, 853–862.CrossRefGoogle ScholarPubMed
McGraw, P., Liang, L. & Provenzale, J. M. (2002). Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. American Journal of Roentgenology, 179, 1515–1522.CrossRefGoogle ScholarPubMed
McKinstry, R. C., Miller, J. H., Snyder, A. Z.et al. (2002). A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology, 59, 824–833.CrossRefGoogle ScholarPubMed
McLean, M. A., Woermann, F. G., Barker, G. J. & Duncan, J. S. (2000). Quantitative analysis of short echo time 1H-MRSI of cerebral gray and white matter. Magnetic Research Medicine, 44, 401–411.3.0.CO;2-W>CrossRefGoogle Scholar
Morriss, M. C., Zimmerman, R. A., Bilaniuk, L. T., Hunter, J. V. & Hasselgrove, J. C. (1999). Changes in brain water diffusion during childhood. Neuroradiology, 41, 929–934.CrossRefGoogle ScholarPubMed
Mukherjee, P. & McKinstry, R. C. (2001). Reversible posterior leukoencephalopathy syndrome: evaluation with diffusion tensor MR imaging. Radiology, 219, 756–765.CrossRefGoogle ScholarPubMed
Mukherjee, P., Miller, J. H., Shimony, J. S.et al. (2002). Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. American Journal of Neuroradiology, 23, 1445–1456.Google ScholarPubMed
Naganawa, S., Sato, C., Ishihra, S.et al. (2004). Serial evaluation of diffusion tensor brain fiber tracking in a patient with severe diffuse axonal injury. American Journal of Neuroradiology, 25, 1553–1536.Google Scholar
Neil, J. J., Shiran, S. I., McKinstry, R. C.et al. (1998). Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology, 209, 57–66.CrossRefGoogle ScholarPubMed
Parizel, P. M., Ceulemans, B., Laridon, A., Ozsarlak, O., Goethem, J. W. & Jorens, P. G. (2003). Cortical hypoxic-ischemic brain damage in shaken-baby (shaken impact) syndrome: value of diffusion-weighted MRI. Pediatric Radiology, 33, 868–871.CrossRefGoogle ScholarPubMed
Pouwels, P. J., Brockmann, K., Kruise, B.et al. (1999). Regional age-dependence of human brain metabolites form infancy to adulthood as detected by quantitative localized proton MRS. Pediatric Research, 46, 474–485.CrossRefGoogle Scholar
Prayer, D. & Prayer, L. (2003). Diffusion-weighted magnetic resonance imaging of cerebral white matter development. European Journal of Radiology, 45, 235–243.CrossRefGoogle ScholarPubMed
Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance Medicine, 30, 672–679.CrossRefGoogle ScholarPubMed
Ptak, T., Sheridan, R. L., Rhea, J. T.et al. (2003). Cerebral fractional anisotropy score in trauma patients: a new indicator of white matter injury after trauma. American Journal of Roentgenology, 181, 1401–1407.CrossRefGoogle ScholarPubMed
Ross, B. D., Ernst, T., Kreis, R.et al. (1998). 1H MRS in acute traumatic brain injury. Journal of Magnetic Resonance Imaging, 8, 829–840.CrossRefGoogle ScholarPubMed
Rugg-Gunn, F. J., Symms, M. R., Barker, G. J., Greenwood, R. & Duncan, J. S. (2001). Diffusion imaging shows abnormalities after blunt head trauma when conventional magnetic resonance imaging is normal. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 530–533.CrossRefGoogle Scholar
Schaefer, P. W., Grant, P. E. & Gonzalez, R. G. (2000). Diffusion-weighted MR imaging of the brain. Radiology, 217, 331–345.CrossRefGoogle Scholar
Schaefer, P. W., Huisman, T. A., Sorensen, A. G., Gonzalez, R. G. & Schwamm, L. H. (2004). Diffusion-weighted MR imaging in closed head injury: high correlation with initial Glasgow coma scale score and score on modified Rankin scale at discharge. Radiology, 233, 58–66.CrossRefGoogle ScholarPubMed
Schuff, N., Ezekiel, F., Gamst, A. C.et al. (2001). Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magnetic Resonance Medicine, 45, 899–907.CrossRefGoogle ScholarPubMed
Schumann, M. U., Stiller, D., Thomas, B., Brinker, T. & Samii, M. (2000). 1H-MR spectroscopic monitoring of post-traumatic metabolism following controlled cortical impact injury: pilot study. Acta Neurochirurgica, 76 Suppl., 3–7.Google Scholar
Sehgal, V., Delproposto, Z., Haacke, E. M.et al. (2005). Clinical applications of neuroimaging with susceptibility-weighted imaging. Journal of Magnetic Resonance Imaging, 22, 439–450.CrossRefGoogle ScholarPubMed
Sigmund, G. A., Tong, K. A., Nickerson, J. P., Wall, C. J., Oyoyo, U. & Ashwal, S. (2007). Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatric Neurology, 36, 217–226.CrossRefGoogle ScholarPubMed
Signoretti, S., Marmarou, A., Fatouros, P.et al. (2002). Application of chemical shift imaging for measurement of NAA in head injured patients. Acta Neurochirurgica, 81 Suppl., 373–375.Google ScholarPubMed
Sinson, G., Bagley, L. J., Cecil, K. M.et al. (2001). Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. American Journal of Neuroradiology, 22, 143–151.Google ScholarPubMed
Soher, B. J., Vermathen, P., Schuff, N.et al. (2000). Short TE in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis. Magnetic Resonance Imaging, 18, 1159–1165.CrossRefGoogle Scholar
Suh, D. Y., Davis, P. C., Hopkins, K. L., Fajman, N. N. & Mapstone, T. B. (2001). Nonaccidental pediatric head injury: diffusion-weighted imaging findings. Neurosurgery, 49, 309–318.CrossRefGoogle ScholarPubMed
Sundgren, P. C., Dong, Q., Gomez-Hassan, D., Mukherji, S. K., Maly, P. & Welsh, R. (2004). Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology, 46, 339–350.CrossRefGoogle ScholarPubMed
Sykova, E. (2004). Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience, 129, 861–876.CrossRefGoogle ScholarPubMed
Tong, K. A., Ashwal, S., Holshouser, B. A.et al. (2003). Hemorrhagic shearing lesions in children and adolescents with post-traumatic diffuse axonal injury: improved detection and initial results. Radiology, 227, 332–339.CrossRefGoogle Scholar
Tong, K. A., Ashwal, S., Holshouser, B. A.et al. (2004). Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Annals of Neurology, 56, 36–50.CrossRefGoogle ScholarPubMed
Tong, K. A., Ashwal, S., Obenaus, A., Nickerson, J. P., Kido, D. & Haacke, E. M. (2008). Susceptibility-weighted MR imaging: a review of clinical applications in children. American Journal of Neuroradiology, 29, 9–17.CrossRefGoogle ScholarPubMed
Toorn, A., Sykova, E., Dijkhuizen, R. M.et al. (1996). Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magnetic Resonance Medicine, 36, 52–60.CrossRefGoogle ScholarPubMed
Vigneron, D. B., Barkovich, A. J., Noworolski, S. M.et al. (2001). Three-dimensional proton MR spectroscopic imaging of premature and term neonates. American Journal of Neuroradiology, 22, 1424–1433.Google ScholarPubMed
Wilde, E. A., Bigler, E. D., Haider, J. M.et al. (2006a). Vulnerability of the anterior commissure in moderate to severe pediatric traumatic brain injury. Journal of Child Neurology, 21, 769–776.CrossRefGoogle ScholarPubMed
Wilde, E. A., Chu, Z., Bigler, E. D.et al. (2006b). Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. Journal of Neurotrauma, 23, 1412–1426.CrossRefGoogle ScholarPubMed
Wilde, E. A., McCauley, S. R., Hunter, J. V.et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70, 948–955.CrossRefGoogle ScholarPubMed
Wozniak, J. R., Krach, L., Ward, E.et al. (2007). Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Archives in Clinical Neuropsychology, 22, 555–568.CrossRefGoogle ScholarPubMed
Yuan, W., Holland, S. K., Schmithorst, V. J.et al. (2007). Diffusion tensor MR imaging reveals persistent white matter alteration after traumatic brain injury experienced during early childhood. American Journal of Neuroradiology, 28, 1919–1925.CrossRefGoogle ScholarPubMed
Zhang, H., Zhang, X., Zhang, T. & Chen, L. (2001). Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries. Clinical Chemistry, 47, 1458–1462.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×