Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T23:07:14.488Z Has data issue: false hasContentIssue false

Chapter 4 - Bone Marrow Failure Syndromes

from Section II - Non-Neoplastic Hematologic Disorders of Blood and Bone Marrow

Published online by Cambridge University Press:  25 January 2024

Xiayuan Liang
Affiliation:
Children’s Hospital of Colorado
Bradford Siegele
Affiliation:
Children’s Hospital of Colorado
Jennifer Picarsic
Affiliation:
Cincinnati Childrens Hospital Medicine Center
Get access

Summary

Bone marrow failure syndromes comprise a heterogeneous group of disorders that may be inherited or acquired; may be static or progressive; and may affect any one hematopoietic lineage individually, multiple lineages, or all lineages collectively. The unifying feature consists of the failure of the bone marrow to supply the body with normal quantities of the mature forms of any of the three hematopoietic-lineage elements. Although bone marrow failure syndromes may engender a predisposition to the development of associated malignancies, and primary neoplastic processes involving the bone marrow and peripheral blood may meet the criteria of impaired hematopoiesis, discussion of neoplastic processes associated with cytopenias will be largely covered elsewhere.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Da Costa, L, Leblanc, T, Mohandas, N. Diamond-Blackfan anemia. Blood. 2020;136(11):1262–73. doi: 10.1182/blood.2019000947Google Scholar
Iolascon, A, Andolfo, I, Russo, R. Congenital dyserythropoietic anemias. Blood. 2020;136(11):1274–83. doi: 10.1182/blood.2019000948Google Scholar
Vlachos, A, Osorio, DS, Atsidaftos, E, et al. Increased prevalence of congenital heart disease in children with Diamond Blackfan anemia suggests unrecognized Diamond Blackfan anemia as a cause of congenital heart disease in the general population: a report of the Diamond Blackfan Anemia Registry. Circ Genom Precis Med. 2018;11(5):e002044. doi: 10.1161/CIRCGENETICS.117.002044Google Scholar
Vlachos, A, Ball, S, Dahl, N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859–76. doi: 10.1111/j.1365-2141.2008.07269.xGoogle Scholar
Glader, BE, Backer, K, Diamond, LK. Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia. N Engl J Med. 1983;309(24):1486–90. doi: 10.1056/NEJM198312153092404Google Scholar
Willig, TN, Pérignon, JL, Gustavsson, P, et al. High adenosine deaminase level among healthy probands of Diamond Blackfan anemia (DBA) cosegregates with the DBA gene region on chromosome 19q13. The DBA Working Group of Société d’Immunologie Pédiatrique (SHIP). Blood. 1998;92(11):4422–7.Google Scholar
Gastou, M, Rio, S, Dussiot, M, et al. The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv. 2017;1(22):1959–76. doi: 10.1182/bloodadvances.2017008078Google Scholar
Moniz, H, Gastou, M, Leblanc, T, et al. Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis. 2012;3:e356. doi: 10.1038/cddis.2012.88Google Scholar
Dutt, S, Narla, A, Lin, K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117(9):2567–76. doi: 10.1182/blood-2010-07-295238Google Scholar
Yang, Z, Keel, SB, Shimamura, A, et al. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci Transl Med. 2016;8(338):338ra67. doi: 10.1126/scitranslmed.aaf3006Google Scholar
Orkin, SH, Fisher, DE, Ginsburg, D, et al., eds. Nathan and Oski’s hematology and oncology of infancy and childhood. 8th ed. Elsevier; 2015.Google Scholar
Means, RT. Pure red cell aplasia. Blood. 2016;128(21):2504–9. doi: 10.1182/blood-2016-05-717140Google Scholar
Levy, J, Espanol-Boren, T, Thomas, C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131(1 Pt 1):4754. doi: 10.1016/s0022-3476(97)70123-9Google Scholar
Mäkitie, O, Juvonen, E, Dunkel, L, et al. Anemia in children with cartilage-hair hypoplasia is related to body growth and to the insulin-like growth factor system. J Clin Endocrinol Metab. 2000;85(2):563–8. doi: 10.1210/jcem.85.2.6339Google Scholar
Rodrigues, JM, Fernandes, HD, Caruthers, C, et al. Cohen syndrome: review of the literature. Cureus. 2018;10(9):e3330. doi: 10.7759/cureus.3330Google Scholar
Mansouri Nejad, SE, Yazdan Panah, MJ, Tayyebi Meibodi, N, et al. Griscelli syndrome: a case report. Iran J Child Neurol. 2014;8(4):72–5.Google Scholar
Kharkar, V, Pande, S, Mahajan, S, et al. Griscelli syndrome: a new phenotype with circumscribed pigment loss? Dermatol Online J. 2007;13(2):17.Google Scholar
Steward, CG, Groves, SJ, Taylor, CT, et al. Neutropenia in Barth syndrome: characteristics, risks, and management. Curr Opin Hematol. 2019;26(1):615. doi: 10.1097/MOH.0000000000000472Google Scholar
Kostmann, R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl (Upps). 1956;45(Suppl 105):178.Google Scholar
Berliner, N, Horwitz, M, Loughran, TP. Congenital and acquired neutropenia. Hematology Am Soc Hematol Educ Program. 2004:6379. doi: 10.1182/asheducation-2004.1.63Google Scholar
Nanua, S, Murakami, M, Xia, J, et al. Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane. Blood. 2011;117(13):3539–47. doi: 10.1182/blood-2010-10-311704Google Scholar
Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge University Press; 2011.Google Scholar
Link, DC. Mechanisms of leukemic transformation in congenital neutropenia. Curr Opin Hematol. 2019;26(1):3440. doi: 10.1097/MOH.0000000000000479Google Scholar
Desplantes, C, Fremond, ML, Beaupain, B, et al. Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French Severe Congenital Neutropenia Registry. Orphanet J Rare Dis. 2014;9:183. doi: 10.1186/s13023-014-0183-8Google Scholar
Palmer, SE, Stephens, K, Dale, DC. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis. Am J Med Genet. 1996;66(4):413–22. doi: 10.1002/(SICI)1096-8628(19961230)66:4<413::aid-ajmg5>3.0.CO;2-LGoogle Scholar
Hammond, WP, Price, TH, Souza, LM, et al. Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N Engl J Med. 1989;320(20):1306–11. doi: 10.1056/NEJM198905183202003Google Scholar
Skokowa, J, Dale, DC, Touw, IP, et al. Severe congenital neutropenias. Nat Rev Dis Primers. 2017;3:17032. doi: 10.1038/nrdp.2017.32Google Scholar
Lei, J, Mackey, MC. Understanding and treating cytopenia through mathematical modeling. Adv Exp Med Biol. 2014;844:279302. doi: 10.1007/978-1-4939-2095-2_14Google Scholar
Dale, DC, Mackey, MC. Understanding, treating and avoiding hematological disease: better medicine through mathematics? Bull Math Biol. 2015;77(5):739–57. doi: 10.1007/s11538-014-9995-xGoogle Scholar
Brown, KL, Wekell, P, Osla, V, et al. Profile of blood cells and inflammatory mediators in periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome. BMC Pediatr. 2010;10:65. doi: 10.1186/1471-2431-10-65Google Scholar
Medlej-Hashim, M, Loiselet, J, Lefranc, G, et al. [Familial Mediterranean fever (FMF): from diagnosis to treatment]. Sante. 2004;14(4):261–6.Google Scholar
Ballmaier, M, Germeshausen, M. Congenital amegakaryocytic thrombocytopenia: clinical presentation, diagnosis, and treatment. Semin Thromb Hemost. 2011;37(6):673–81. doi: 10.1055/s-0031-1291377Google Scholar
Germeshausen, M, Ballmaier, M. CAMT-MPL: congenital amegakaryocytic thrombocytopenia caused by MPL mutations – heterogeneity of a monogenic disorder – a comprehensive analysis of 56 patients. Haematologica. 2021;106(9):2439–48. doi: 10.3324/haematol.2020.257972Google Scholar
Seo, A, Ben-Harosh, M, Sirin, M, et al. Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in. Blood. 2017;130(7):875–80. doi: 10.1182/blood-2017-02-768036Google Scholar
Steinberg, O, Gilad, G, Dgany, O, et al. Congenital amegakaryocytic thrombocytopenia-3 novel c-MPL mutations and their phenotypic correlations. J Pediatr Hematol Oncol. 2007;29(12):822–5. doi: 10.1097/MPH.0b013e318158152eGoogle Scholar
Dokal, I, Vulliamy, T. Inherited bone marrow failure syndromes. Haematologica. 2010;95(8):1236–40. doi: 10.3324/haematol.2010.025619Google Scholar
Germeshausen, M, Ancliff, P, Estrada, J, et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv. 2018;2(6):586–96. doi: 10.1182/bloodadvances.2018016501Google Scholar
Roberts, I, Murray, NA. Neonatal thrombocytopenia: causes and management. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F359–64. doi: 10.1136/fn.88.5.f359Google Scholar
Kaplan, RN, Bussel, JB. Differential diagnosis and management of thrombocytopenia in childhood. Pediatr Clin North Am. 2004;51(4):1109–40, xi. doi: 10.1016/j.pcl.2004.03.008Google Scholar
Albers, CA, Newbury-Ecob, R, Ouwehand, WH, et al. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome. Curr Opin Genet Dev. 2013;23(3):316–23. doi: 10.1016/j.gde.2013.02.015Google Scholar
Bagby, GC. Multifunctional Fanconi proteins, inflammation and the Fanconi phenotype. EBioMedicine. 2016;8:1011. doi: 10.1016/j.ebiom.2016.06.005Google Scholar
De Kerviler, E, Guermazi, A, Zagdanski, AM, et al. The clinical and radiological features of Fanconi’s anaemia. Clin Radiol. 2000;55(5):340–5. doi: 10.1053/crad.2000.0445Google Scholar
Schneider, M, Chandler, K, Tischkowitz, M, et al. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults. Clin Genet. 2015;88(1):1324. doi: 10.1111/cge.12517Google Scholar
Auerbach, AD. Fanconi anemia and its diagnosis. Mutat Res. 2009;668(1–2):410. doi: 10.1016/j.mrfmmm.2009.01.013Google Scholar
Shimamura, A, Alter, BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22. doi: 10.1016/j.blre.2010.03.002Google Scholar
Alter, BP, Giri, N, Savage, SA, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179–88. doi: 10.1111/j.1365-2141.2010.08212.xGoogle Scholar
Tönnies, H, Huber, S, Kuhl, JS, et al. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood. 2003;101(10):3872–4. doi: 10.1182/blood-2002-10-3243Google Scholar
Shimamura, A. Inherited bone marrow failure syndromes: molecular features. Hematology Am Soc Hematol Educ Program. 2006:6371. doi: 10.1182/asheducation-2006.1.63Google Scholar
Garcia, CK, Wright, WE, Shay, JW. Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res. 2007;35(22):7406–16. doi: 10.1093/nar/gkm644Google Scholar
Alter, BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97(2):425–40. doi: 10.1002/cncr.11046Google Scholar
Dokal, I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000;110(4):768–79. doi: 10.1046/j.1365-2141.2000.02109.xGoogle Scholar
Allenspach, EJ, Bellodi, C, Jeong, D, et al. Common variable immunodeficiency as the initial presentation of dyskeratosis congenita. J Allergy Clin Immunol. 2013;132(1):223–6. doi: 10.1016/j.jaci.2012.11.052Google Scholar
Hacia, JG, Novotny, EA, Mayer, RA, et al. Design of modified oligodeoxyribonucleotide probes to detect telomere repeat sequences in FISH assays. Nucleic Acids Res. 1999;27(20):4034–9. doi: 10.1093/nar/27.20.4034Google Scholar
Perner, S, Brüderlein, S, Hasel, C, et al. Quantifying telomere lengths of human individual chromosome arms by centromere-calibrated fluorescence in situ hybridization and digital imaging. Am J Pathol. 2003;163(5):1751–6. doi: 10.1016/S0002-9440(10)63534-1Google Scholar
Poon, SS, Martens, UM, Ward, RK, et al. Telomere length measurements using digital fluorescence microscopy. Cytometry. 1999;36(4):267–78. doi: 10.1002/(sici)1097-0320(19990801)36:4<267::aid-cyto1>3.0.co;2-oGoogle Scholar
Vulliamy, T, Marrone, A, Szydlo, R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004;36(5):447–9. doi: 10.1038/ng1346Google Scholar
Starokadomskyy, P, Escala Perez-Reyes, A, Burstein, E. Immune dysfunction in Mendelian disorders of POLA1 deficiency. J Clin Immunol. 2021;41(2):285–93. doi: 10.1007/s10875-020-00953-wGoogle Scholar
Smahi, A, Courtois, G, Vabres, P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–72. doi: 10.1038/35013114Google Scholar
Piccolo, V, Russo, T, Di Pinto, D, et al. Poikiloderma with neutropenia and mastocytosis: a case report and a review of dermatological signs. Front Med (Lausanne). 2021;8:680363. doi: 10.3389/fmed.2021.680363Google Scholar
Huang, JN, Shimamura, A. Clinical spectrum and molecular pathophysiology of Shwachman-Diamond syndrome. Curr Opin Hematol. 2011;18(1):30–5. doi: 10.1097/MOH.0b013e32834114a5Google Scholar
Ginzberg, H, Shin, J, Ellis, L, et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr. 1999;135(1):81–8. doi: 10.1016/s0022-3476(99)70332-xGoogle Scholar
Aggett, PJ, Cavanagh, NP, Matthew, DJ, et al. Shwachman’s syndrome. A review of 21 cases. Arch Dis Child. 1980;55(5):331–47. doi: 10.1136/adc.55.5.331Google Scholar
Hashmi, SK, Allen, C, Klaassen, R, et al. Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet. 2011;79(5):448–58. doi: 10.1111/j.1399-0004.2010.01468.xGoogle Scholar
Kent, A, Murphy, GH, Milla, P. Psychological characteristics of children with Shwachman syndrome. Arch Dis Child. 1990;65(12):1349–52. doi: 10.1136/adc.65.12.1349Google Scholar
Kerr, EN, Ellis, L, Dupuis, A, et al. The behavioral phenotype of school-age children with shwachman diamond syndrome indicates neurocognitive dysfunction with loss of Shwachman-Bodian-Diamond syndrome gene function. J Pediatr. 2010;156(3):433–8. doi: 10.1016/j.jpeds.2009.09.026Google Scholar
Toiviainen-Salo, S, Durie, PR, Numminen, K, et al. The natural history of Shwachman-Diamond syndrome-associated liver disease from childhood to adulthood. J Pediatr. 2009;155(6):807–11.e2. doi: 10.1016/j.jpeds.2009.06.047Google Scholar
Dror, Y, Freedman, MH. Shwachman-Diamond syndrome: An inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood. 1999;94(9):3048–54.Google Scholar
Hall, GW, Dale, P, Dodge, JA. Shwachman-Diamond syndrome: UK perspective. Arch Dis Child. 2006;91(6):521–4. doi: 10.1136/adc.2003.046151Google Scholar
Mack, DR, Forstner, GG, Wilschanski, M, et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology. 1996;111(6):1593–602. doi: 10.1016/s0016-5085(96)70022-7Google Scholar
Donadieu, J, Fenneteau, O, Beaupain, B, et al. Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome. Haematologica. 2012;97(9):1312–9. doi: 10.3324/haematol.2011.057489Google Scholar
Dror, Y, Ginzberg, H, Dalal, I, et al. Immune function in patients with Shwachman-Diamond syndrome. Br J Haematol. 2001;114(3):712–7. doi: 10.1046/j.1365-2141.2001.02996.xGoogle Scholar
Myers, KC, Furutani, E, Weller, E, et al. Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematol. 2020;7(3):e238e246. doi: 10.1016/S2352-3026(19)30206-6Google Scholar
Dror, Y, Donadieu, J, Koglmeier, J, et al. Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann N Y Acad Sci. 2011;1242:4055. doi: 10.1111/j.1749-6632.2011.06349.xGoogle Scholar
Dhanraj, S, Matveev, A, Li, H, et al. Biallelic mutations in. Blood. 2017;129(11):1557–62. doi: 10.1182/blood-2016-08-735431Google Scholar
Tan, S, Kermasson, L, Hoslin, A, et al. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood. 2019;134(3):277–90. doi: 10.1182/blood.2018893404Google Scholar
Boocock, GR, Morrison, JA, Popovic, M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97101. doi: 10.1038/ng1062Google Scholar
Ng, CL, Waterman, DG, Koonin, EV, et al. Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein. BMC Struct Biol. 2009;9:32. doi: 10.1186/1472-6807-9-32Google Scholar
de Oliveira, JF, Sforça, ML, Blumenschein, TM, et al. Structure, dynamics, and RNA interaction analysis of the human SBDS protein. J Mol Biol. 2010;396(4):1053–69. doi: 10.1016/j.jmb.2009.12.039Google Scholar
Orelio, C, Verkuijlen, P, Geissler, J, et al. SBDS expression and localization at the mitotic spindle in human myeloid progenitors. PLoS One. 2009;4(9):e7084. doi: 10.1371/journal.pone.0007084Google Scholar
Orelio, C, Kuijpers, TW. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics. Haematologica. 2009;94(3):409–13. doi: 10.3324/haematol.13733Google Scholar
Donadieu, J, Michel, G, Merlin, E, et al. Hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: experience of the French neutropenia registry. Bone Marrow Transplant. 2005;36(9):787–92. doi: 10.1038/sj.bmt.1705141Google Scholar
Cesaro, S, Pillon, M, Sauer, M, et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: a retrospective analysis and a review of the literature by the Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation (SAAWP-EBMT). Bone Marrow Transplant. 2020;55(9):1796–809. doi: 10.1038/s41409-020-0863-zGoogle Scholar
Cesaro, S, Oneto, R, Messina, C, et al. Haematopoietic stem cell transplantation for Shwachman-Diamond disease: a study from the European Group for blood and marrow transplantation. Br J Haematol. 2005;131(2):231–6. doi: 10.1111/j.1365-2141.2005.05758.xGoogle Scholar
Pearson, HA, Lobel, JS, Kocoshis, SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr. 1979;95(6):976–84. doi: 10.1016/s0022-3476(79)80286-3Google Scholar
Berthold, F, Fuhrmann, W, Lampert, F. Fatal aplastic anaemia in a child with features of Dubowitz syndrome. Eur J Pediatr. 1987;146(6):605–7. doi: 10.1007/BF02467366Google Scholar
Walters, TR, Desposito, F. Aplastic anemia in Dubowitz syndrome. J Pediatr. 1985;106(4):622–3. doi: 10.1016/s0022-3476(85)80089-5Google Scholar
Harper, RG, Orti, E, Baker, RK. Bird-beaded dwarfs (Seckel’s syndrome). A familial pattern of developmental, dental, skeletal, genital, and central nervous system anomalies. J Pediatr. 1967;70(5):799804. doi: 10.1016/s0022-3476(67)80334-2Google Scholar
Resnick, IB, Kondratenko, I, Togoev, O, et al. Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J Pediatr. 2002;140(3):355–61. doi: 10.1067/mpd.2002.122724Google Scholar
Patel, BJ, Barot, SV, Kuzmanovic, T, et al. Distinctive and common features of moderate aplastic anaemia. Br J Haematol. 2020;189(5):967–75. doi: 10.1111/bjh.16460Google Scholar
Maciejewski, JP, Sloand, EM, Nunez, O, et al. Recombinant humanized anti-IL-2 receptor antibody (daclizumab) produces responses in patients with moderate aplastic anemia. Blood. 2003;102(10):3584–6. doi: 10.1182/blood-2003-04-1032Google Scholar
Young, NS, Kaufman, DW. The epidemiology of acquired aplastic anemia. Haematologica. 2008;93(4):489–92. doi: 10.3324/haematol.12855Google Scholar
Shimano, KA, Narla, A, Rose, MJ, et al. Diagnostic work-up for severe aplastic anemia in children: Consensus of the North American Pediatric Aplastic Anemia Consortium. Am J Hematol. 2021;96(11):1491–504. doi: 10.1002/ajh.26310Google Scholar
Young, NS, Tisdale, JF. High-dose cyclophosphamide for treatment of aplastic anemia. Ann Intern Med. 2002;137(6):549–50; author reply 549–50. doi: 10.7326/0003-4819-137-6-200209170-00030Google Scholar
Moormeier, JA, Rubin, CM, Le Beau, MM, et al. Trisomy 6: a recurring cytogenetic abnormality associated with marrow hypoplasia. Blood. 1991;77(6):1397–8.Google Scholar
Ohga, S, Ohara, A, Hibi, S, et al. Treatment responses of childhood aplastic anaemia with chromosomal aberrations at diagnosis. Br J Haematol. 2002;118(1):313–9. doi: 10.1046/j.1365-2141.2002.03582.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×