Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T07:05:38.647Z Has data issue: false hasContentIssue false

18 - Role of MRI and radiology in post mortems

Published online by Cambridge University Press:  05 September 2014

Alan Sprigg
Affiliation:
Sheffield Children’s Hospital
Elspeth H. Whitby
Affiliation:
University of Sheffield and Sheffield Teaching Hospitals Foundation Trust
Marta C. Cohen
Affiliation:
Sheffield Children’s Hospital
Irene Scheimberg
Affiliation:
Barts and the London NHS Trust, London
Get access

Summary

Introduction

Imaging assists the pathologist to visualize abnormalities that may not be evident to direct inspection. Post mortem imaging should be performed on all children where there is any suspicion about the cause of death (coronial or medical examiner request); in neonatal death; intrauterine fetal death; and termination of pregnancy for fetal abnormalities. Forensic autopsies may be performed with parental consent or as directed by the coroner (or equivalent legal officer).

The most common imaging modality is plain radiography. This can be performed either in the autopsy suite or using more specialized techniques. Most pediatric pathology departments have a dedicated imaging device, which uses low kilo-voltage (kV) X-rays to achieve maximum contrast and special imaging plates to achieve good spatial resolution and contrast on small specimens. For the larger fetus and in infants or children, plain radiography is performed by moving the body to the imaging department or alternatively using a portable machine in the autopsy room.

Imaging can assist the pathologist in diagnosis and guiding selective resection of bones followed by specimen radiography and then histopathological assessment.

More recently post mortem ultrasound (US), computed tomography (CT), or magnetic resonance (MR) scanning may allow further assessment and selective biopsy or restricted autopsy [1]. This is particularly useful in children whose parents have reservations about full autopsy. In the future “virtual autopsy” may be feasible. However, currently there are few detailed studies and experience in the clinical setting is limited.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hong, T. S., Reyes, J. A., Moineddin, R., et al. Value of postmortem thoracic CT over radiography in imaging of pediatric rib fractures. Pediatr Radiol 2011; 41: 736–48.CrossRefGoogle ScholarPubMed
Society of Radiographers. The child and the law: the roles and responsibilities of the radiographer. In: The Society of Radiographers. London, The Society of Radiographers, 2005.Google Scholar
Kleinman, P. K., O’Connor, B., Nimkin, K., et al. Detection of rib fractures in an abused infant using digital radiography: a laboratory study. Pediatr Radiol 2002; 32: 896–901.CrossRefGoogle Scholar
de Lange, C., Vege, A., and Stake, G.. Radiography after unexpected death in infants and children compared to autopsy. Pediatr Radiol 2007; 37:159–65.CrossRefGoogle ScholarPubMed
Royal College of Paediatrics and Children’s Health. Standards for Radiological Investigations of suspected Non Accidental Injury. London, Royal College of Paediatrics and Children’s Health, 2008.Google Scholar
Fuentealba, I. and Taylor, G. A.. Diagnostic errors with inserted tubes, lines and catheters in children. Pediatr Radiol 2012; 42: 1305–15.CrossRefGoogle ScholarPubMed
Beluffi, G., Perotti, G., Sileo, C., et al. Central venous catheters in premature babies: radiological evaluation, malpositioning and complications. Pediatr Radiol 2012; 42: 1000–8.CrossRefGoogle ScholarPubMed
Laczniak, A. N., Sato, Y., and Nashelsky, M.. Postmortem gastric perforation (gastromalacia) mimicking abusive injury in sudden unexplained infant death. Pediatr Radiol 2011; 41: 1595–7.CrossRefGoogle ScholarPubMed
Karmazyn, B., Duhn, R. D., Jennings, S. G., et al. Long bone fracture detection in suspected child abuse: contribution of lateral views. Pediatr Radiol 2012; 42: 463–69.CrossRefGoogle ScholarPubMed
Klotzbach, H., Delling, G., Richter, E., Sperhake, J. P., and Puschel, K.. Post-mortem diagnosis and age estimation of infants’ fractures. Int J Legal Med 2003; 117: 82–9.Google ScholarPubMed
Prosser, I., Maguire, S., Harrison, S. K., et al. How old is this fracture? Radiologic dating of fractures in children: a systematic review. Am J Roentgenology 2005; 184: 1282–6.CrossRefGoogle ScholarPubMed
Maguire, S., Mann, M., John, N., et al. Does cardiopulmonary resuscitation cause rib fractures in children? A systematic review. Child Abuse & Neglect 2006; 30: 739–51.CrossRefGoogle ScholarPubMed
Kleinman, P. K. and Schlesinger, A. E.. Mechanical factors associated with posterior rib fractures: laboratory and case studies. Pediatr Radiol 1997; 27: 87–91.CrossRefGoogle ScholarPubMed
Kleinman, P. K., Marks, S. C., Spevak, M. R., and Richmond, J. M.. Fractures of the rib head in abused infants. Radiology 1992; 185: 119–23.CrossRefGoogle ScholarPubMed
Spevak, M. R., Kleinman, P. K., Belanger, P. L., Primack, C., and Richmond, J. M.. Cardiopulmonary resuscitation and rib fractures in infants: a postmortem radiologic-pathologic study. JAMA. 1994; 272: 617–18.CrossRefGoogle ScholarPubMed
Bush, C. M., Jones, J. S., Cohle, S. D., and Johnson, H.. Pediatric injuries from cardiopulmonary resuscitation. Annals Emerg Med 1996; 28: 40–4.CrossRefGoogle ScholarPubMed
Price, E. A., Rush, L. R., Perper, J. A., and Bell, M. D.. Cardiopulmonary resuscitation-related injuries and homicidal blunt abdominal trauma in children. Am J Forensic Med Pathol 2000; 21: 307–10.CrossRefGoogle ScholarPubMed
Bishop, N., Sprigg, A., and Dalton, A.. Unexplained fractures in infancy: looking for fragile bones. Arch Dis Child 2007; 92: 251–6.CrossRefGoogle ScholarPubMed
Brookes, J. A., Hall-Craggs, M. A., Sams, V. R., and Lees, W. R.. Non-invasive perinatal necropsy by magnetic resonance imaging. Lancet. 1996; 348: 1139–41.CrossRefGoogle ScholarPubMed
Swinton, C. H., Weiner, J., and Okah, F. A.. The neonatal autopsy: can it be revived?Am J Perinatol. 2013; 30: 730–9.Google ScholarPubMed
Brookes, J. A., Deng, J., Wilkinson, I. D., and Lees, W. R.. Three-dimensional imaging of the postmortem fetus by MRI: early experience. Fetal Diag Ther 1999; 14: 166–71.CrossRefGoogle ScholarPubMed
Woodward, P. J., Sohaey, R., Harris, D. P., et al. Postmortem fetal MR imaging: comparison with findings at autopsy. Am J Roentgenology 1997; 168: 41–6.CrossRefGoogle ScholarPubMed
Griffiths, P. D., Paley, M. N., and Whitby, E. H.. MR imaging of the fetal brain and spine: a maturing technology. Annals Academy Medicine, Singapore 2003; 32: 483–9.Google ScholarPubMed
Huisman, T. A., Wisser, J., Stallmach, T., et al. MR autopsy in fetuses. Fetal Diag Ther 2002; 17: 58–64.CrossRefGoogle ScholarPubMed
Barber, B. R., Weber, M. A., Bockenhauer, D., Hiorns, M. P., and McHugh, K.. Postmortem MRI of bladder agenesis. Pediatr Radiol 2011; 41: 110–12.CrossRefGoogle ScholarPubMed
Zhang, Z., Liu, S., Lin, X., et al. Development of fetal brain of 20 weeks gestational age: assessment with post-mortem Magnetic Resonance Imaging. Eur J Radiol 2011; 80: e432–9.CrossRefGoogle ScholarPubMed
Widjaja, E., Whitby, E. H., Cohen, M., Paley, M. N., and Griffiths, P. D.. Post-mortem MRI of the foetal spine and spinal cord. Clinical radiol. 2006; 61: 679–85.CrossRefGoogle ScholarPubMed
Jackowski, C., Thali, M., Aghayev, E., et al. Postmortem imaging of blood and its characteristics using MSCT and MRI. Int J Legal Med 2006; 120: 233–40.CrossRefGoogle ScholarPubMed
Cohen, M. C., Paley, M. N., Griffiths, P. D., and Whitby, E. H.. Less invasive autopsy: benefits and limitations of the use of magnetic resonance imaging in the perinatal postmortem. Pediatr Development Pathol. 2008; 11: 1–9.CrossRefGoogle ScholarPubMed
Thayyil, S., Sebire, N. J., Chitty, L. S., et al. Post mortem magnetic resonance imaging in the fetus, infant and child: a comparative study with conventional autopsy (MaRIAS Protocol). BMC Pediatr. 2011; 11: 120.CrossRefGoogle Scholar
Votino, C., Jani, J., Verhoye, M., et al. Postmortem examination of human fetal hearts at or below 20 weeks’ gestation: a comparison of high-field MRI at 9.4 T with lower-field MRI magnets and stereomicroscopic autopsy. Ultrasound Obstet Gynecol 2012; 40: 437–44.CrossRefGoogle ScholarPubMed
Breeze, A. C., Jessop, F. A., Whitehead, A. L., et al. Feasibility of percutaneous organ biopsy as part of a minimally invasive perinatal autopsy. Virchows Archiv. 2008; 452: 201–7.CrossRefGoogle ScholarPubMed
Nicholl, R. M., Balasubramaniam, V. P., Urquhart, D. S., Sellathurai, N., and Rutherford, M. A.. Postmortem brain MRI with selective tissue biopsy as an adjunct to autopsy following neonatal encephalopathy. Eur J Pediatr Neurol. 2007; 11: 167–74.CrossRefGoogle ScholarPubMed
Thayyil, S., Chandrasekaran, M., Chitty, L. S., et al. Diagnostic accuracy of post-mortem magnetic resonance imaging in fetuses, children and adults: a systematic review. Eur J Radiol 2010; 75: e142–8.CrossRefGoogle ScholarPubMed
Griffiths, P. D., Variend, D., Evans, M., et al. Postmortem MR imaging of the fetal and stillborn central nervous system. Am J Neuroradiol 2003; 24: 22–7.Google ScholarPubMed
Lavanya, T., Cohen, M., Gandhi, S. V., Farrell, T., and Whitby, E. H.. A case of a Dandy–Walker variant: the importance of a multidisciplinary team approach using complementary techniques to obtain accurate diagnostic information. Br J Radiol. 2008; 81: e242–5.CrossRefGoogle ScholarPubMed
Thayyil, S., De Vita, E., Sebire, N. J., et al. Post-mortem cerebral magnetic resonance imaging T1 and T2 in fetuses, newborns and infants. Eur J Radiol 2012; 81: e232–8.CrossRefGoogle ScholarPubMed
Thayyil, S., Cleary, J. O., Sebire, N. J., et al. Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9.4 T with conventional MRI and invasive autopsy. Lancet. 2009; 374: 467–75.CrossRefGoogle Scholar
Hagmann, C. F., Robertson, N. J., Sams, V. R., and Brookes, J. A.. Postmortem magnetic resonance imaging as an adjunct to perinatal autopsy for renal-tract abnormalities. Arch Dis Childhood Fetal Neonatal Ed 2007; 92: F215–18.CrossRefGoogle ScholarPubMed
Breeze, A. C., Gallagher, F. A., Lomas, D. J., Smith, G. C., and Lees, C. C.. Postmortem fetal organ volumetry using magnetic resonance imaging and comparison to organ weights at conventional autopsy. Ultrasound Obstet Gynecol 2008; 31: 187–93.CrossRefGoogle ScholarPubMed
Jackowski, C., Thali, M. J., Buck, U., et al. Noninvasive estimation of organ weights by postmortem magnetic resonance imaging and multislice computed tomography. Invest Radiol 2006; 41: 572–8.CrossRefGoogle ScholarPubMed
Cannie, M., Votino, C., Moerman, P., et al. Acceptance, reliability and confidence of diagnosis of fetal and neonatal virtuopsy compared with conventional autopsy: a prospective study. Ultrasound Obstet Gynecol 2012; 39: 659–65.CrossRefGoogle ScholarPubMed
Christe, A., Flach, P., Ross, S., et al. Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 2010; 12: 215–22.CrossRefGoogle Scholar
Hall, C. M., Offiah, A. C., Forzano, F., et al. Fetal and Perinatal Skeletal Dysplasias: An Atlas of Multimodality Imaging. London, Radcliffe Publishing, 2012.Google Scholar
Schumacher, R., Seaver, L. H., Spranger, J.. Fetal Radiology: A Diagnostic Atlas. Heidelberg, Springer, 2004. Useful overview. Details of bone lengths with centiles and gestation.CrossRefGoogle Scholar
Tayhbi, H. and Lachman, R. S.. Radiology of Syndromes, Metabolic Disorders and Skeletal Dysplasias. 4th edition. St Louis, Mosby, 1990. Radiographs and clinical details of most syndromes included.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×