Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T06:17:35.967Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 June 2018

David W. Eaton
Affiliation:
University of Calgary
Get access
Type
Chapter
Information
Passive Seismic Monitoring of Induced Seismicity
Fundamental Principles and Application to Energy Technologies
, pp. 302 - 339
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, R. E. 1995. Earthquake source scaling relationships from 1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research: Solid Earth, 100(B12), 24015–24036.CrossRefGoogle Scholar
AbuAisha, M., Eaton, D. W., Priest, J., and Wong, R. 2017. Hydro-mechanically coupled FDEM framework to investigate near-wellbore hydraulic fracturing in homogeneous and fractured rock formations. Journal of Petroleum Science and Engineering, 154, 100–113.CrossRefGoogle Scholar
Adachi, J., Siebrits, E., Peirce, A., and Desroches, J. 2007. Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences, 44(5), 739–757.Google Scholar
Ahern, T., and Dost, B. 2012. SEED Reference Manual: Standard for the Exchange of Earthquake Data. Tech. rept. International Federation of Digital Seismograph Networks.
Ajaya, B., Aso, I. I., Terry, I. J., Walker, K., Wutherirch, K., Caplan, J., Gerdom, D., Clark, B. D., Ganguly, U., Li, X., Xu, Y., Yang, H., Liu, H., Luo, Y., and Waters, G. 2013. Stimulation design for unconventional resources. Oilfield Review, 25(2), 34–46.Google Scholar
Akaike, H. 1998. Information theory and an extension of the maximum likelihood principle. Pages 199–213 of: Selected Papers of Hirotugu Akaike. Springer.Google Scholar
Aki, K. 1965. Maximum likelihood estimate of $b$ in the formula $\log N = a − bM$ and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237–239.Google Scholar
Aki, K., and Richards, P. G. 2002. Quantitative Seismology. Vol. I. University Science Books.Google Scholar
Akram, J. 2014. Downhole Microseismic Monitoring: Processing, Algorithms and Error Analysis. Ph.D. thesis, University of Calgary.Google Scholar
Akram, J., and Eaton, D. W. 2016a. Refinement of arrival-time picks using a crosscorrelation based workflow. Journal of Applied Geophysics, 135, 55–66.CrossRefGoogle Scholar
Akram, J., and Eaton, D. W. 2016b. A review and appraisal of arrival-time picking methods for downhole microseismic data. Geophysics, 81(2), KS71–KS91.CrossRefGoogle Scholar
Albright, J. N., and Pearson, C. F. 1982. Acoustic emissions as a tool for hydraulic fracture location: Experience at the Fenton Hill Hot Dry Rock site. Society of Petroleum Engineers Journal, 22(04), 523–530.CrossRefGoogle Scholar
Alexandrakis, C., Calò, M., Bouchaala, F., and Vavryčuk, V. 2014. Velocity structure and the role of fluids in the West Bohemia Seismic Zone. Solid Earth, 5(2), 863.CrossRefGoogle Scholar
Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., Lamb, B. K., Miskimins, J., Sawyer, R. F., and Seinfeld, J. H. 2013. Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Sciences, 110(44), 17768–17773.CrossRefGoogle ScholarPubMed
Allmann, B. P., and P. M., Shearer 2009. Global variations of stress drop for moderate to large earthquakes, J. Geophys. Res., 114, B01310, doi:10.1029/2008JB005821.CrossRefGoogle Scholar
Amadei, B., and Stephansson, O. 1997. Rock Stress and its Measurement. Chapman & Hall.CrossRefGoogle Scholar
Anderson, E. M. 1951. The Dynamics of Faulting and Dyke Formation with Applications to Britain. Hafner Pub. Co.Google Scholar
Anderson, T. L. 2005. FractureMechanics: Fundamentals and Applications. 3rd edn. CRC Press.Google Scholar
API. 2014. API Recommended Practice 13C. Tech. rept. American Petroleum Institute.
Artman, B. 2006. Imaging passive seismic data. Geophysics, 71(4), SI177–SI187.CrossRefGoogle Scholar
Artman, B., Podladtchikov, I., and Witten, B. 2010. Source location using time-reverse imaging. Geophysical Prospecting, 58(5), 861–873.CrossRefGoogle Scholar
Atkinson, G. M. 2015. Ground-motion prediction equation for small-to-moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bulletin of the Seismological Society of America, 105(2A), 981–992.CrossRefGoogle Scholar
Atkinson, G. M. 2017. Strategies to prevent damage to critical infrastructure due to induced seismicity. FACETS, 2(1), 374–394.CrossRefGoogle Scholar
Atkinson, G. M., and Assatourians, K. 2017. Are ground-motion models derived from natural events applicable to the estimation of expected motions for induced earthquakes? Seismological Research Letters, 88(2A), 430–441.CrossRefGoogle Scholar
Atkinson, G. M., Kaka, S. I., Eaton, D., Bent, A., Peci, V., and Halchuk, S. 2008. A very close look at a moderate earthquake near Sudbury, Ontario. Seismological Research Letters, 79(1), 119–131.CrossRefGoogle Scholar
Atkinson, G. M., Greig, D. W., and Yenier, E. 2014. Estimation of moment magnitude (M) for small events (M < 4) on local networks. Seismological Research Letters, 85(5), 1116–1124.CrossRefGoogle Scholar
Atkinson, G. M., Ghofrani, H., and Assatourians, K. 2015. Impact of induced seismicity on the evaluation of seismic hazard: some preliminary considerations. Seismological Research Letters, 86(3), 1009–1021.CrossRefGoogle Scholar
Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, Y. J., Harrington, R. M., Liu, Y., Van der Baan, M., and Kao, H. 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 87(3), 631–647.CrossRefGoogle Scholar
Avseth, P., Mukerji, T., and Mavko, G. 2010. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.Google Scholar
Aydin, A. 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17(7), 797–814.CrossRefGoogle Scholar
Babcock, E. A. 1978. Measurement of subsurface fractures from dipmeter logs. AAPG Bulletin, 62(7), 1111–1126.Google Scholar
Bachmann, C. E., Wiemer, S., Goertz-Allmann, B. P., and Woessner, J. 2012. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophysical Research Letters, 39(9).CrossRefGoogle Scholar
Backus, G. E. 1962. Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–4440.CrossRefGoogle Scholar
Bagaini, C. 2005. Performance of time-delay estimators. Geophysics, 70(4), V109–V120.CrossRefGoogle Scholar
Baig, A., and Urbancic, T. 2010. Microseismic moment tensors: a path to understanding frac growth. The Leading Edge, 29(3), 320–324.CrossRefGoogle Scholar
Baisch, S., Vörös, R., Weidler, R., and Wyborn, D. 2009. Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the Cooper Basin, Australia. Bulletin of the Seismological Society of America, 99(1), 148–158.CrossRefGoogle Scholar
Bak, P., and Tang, C. 1989. Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research: Solid Earth, 94(B11), 15635–15637.CrossRefGoogle Scholar
Bak, P., Tang, C., and Wiesenfeld, K. 1988. Self-organized criticality. Physical Review A, 38(1), 364.CrossRefGoogle ScholarPubMed
Baker, J. W. 2008. Probabilistic Seismic Hazard Analysis. Jack W. Baker.Google Scholar
Bakun, W. H., and Joyner, W. B. 1984. The ML scale in central California. Bulletin of the Seismological Society of America, 74(5), 1827–1843.Google Scholar
Bao, X., and Eaton, D. W. 2016. Fault activation by hydraulic fracturing in western Canada. Science, 354(6318), 1406–1409.CrossRefGoogle ScholarPubMed
Baranova, V., Mustaqeem, A., and Bell, S. 1999. A model for induced seismicity caused by hydrocarbon production in the Western Canada Sedimentary Basin. Canadian Journal of Earth Sciences, 36(1), 47–64.CrossRefGoogle Scholar
Barati, R. and Liang, J.-T. 2014. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci., 131, 40735, doi: 10.1002/app.40735.CrossRefGoogle Scholar
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. 1996. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469–483.CrossRefGoogle Scholar
Barenblatt, G. I. 1962. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, 55–129.Google Scholar
Barrett, S. A., and Beroza, G. C. 2014. An empirical approach to subspace detection. Seismological Research Letters, 85(3), 594–600.CrossRefGoogle Scholar
Barry, K. M., Cavers, D. A., and Kneale, C. W. 1975. Recommended standards for digital tape formats. Geophysics, 40(2), 344–352.CrossRefGoogle Scholar
Barth, A., Reinecker, J., and Heidbach, O. 2016. Guidelines for the analysis of earthquake focal mechanism solutions. Pages 15–26 of: WSM Scientific Technical Report, vol. WSM STR 16-01. World Stress Map Project.
Barton, C. A., Zoback, M. D., and Burns, K. L. 1988. In-situ stress orientation and magnitude at the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts. Geophysical Research Letters, 15(5), 467–470.CrossRefGoogle Scholar
BCOGC. 2012. Investigation of Observed Seismicity in the Horn River Basin. Tech. rept. BC Oil and Gas Commission.
BCOGC. 2014. Investigation of Observed Seismicity in the Montney Trend. Tech. rept. BC Oil and Gas Commission.
Beeler, N. M. 2001. Stress drop with constant, scale independent seismic efficiency and overshoot. Geophysical Research Letters, 28(17), 3353–3356.CrossRefGoogle Scholar
Belayouni, N., Gesret, A., Daniel, G., and Noble, M. 2015. Microseismic event location using the first and reflected arrivals. Geophysics, 80(6), WC133–WC143.CrossRefGoogle Scholar
Bell, J. S., and Babcock, E. A. 1986. The stress regime of the Western Canadian Basin and implications for hydrocarbon production. Bulletin of Canadian Petroleum Geology, 34(3), 364–378.Google Scholar
Bell, J. S., and Bachu, S. 2003. In situ stress magnitude and orientation estimates for Cretaceous coal-bearing strata beneath the plains area of central and southern Alberta. Bulletin of Canadian Petroleum Geology, 51(1), 1–28.CrossRefGoogle Scholar
Bell, J. S., and Gough, D. I. 1979. Northeast–southwest compressive stress in Alberta evidence from oil wells. Earth and Planetary Science Letters, 45(2), 475–482.CrossRefGoogle Scholar
Bell, M., Kraaijevanger, H., and Maisons, C. 2000. Integrated downhole monitoring of hydraulically fractured production wells. In: SPE European Petroleum Conference. Society of Petroleum Engineers.Google Scholar
Ben-Zion, Y., and Sammis, C. G. 2003. Characterization of fault zones. Pages 677–715 of: Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume, 1 edn. Pageoph Topical Volumes. Birkhauser Basel.CrossRefGoogle Scholar
Bendat, J. S., and Piersol, A. G. 2011. Random Data: Analysis and Measurement Procedures. Vol. 729. John Wiley & Sons.Google Scholar
Benz, H. M., McMahon, N. D., Aster, R. C., McNamara, D. E., and Harris, D. B. 2015. Hundreds of earthquakes per day: the 2014 Guthrie, Oklahoma, earthquake sequence. Seismological Research Letters, 86(5), 1318–1325.CrossRefGoogle Scholar
Beresnev, I. A. 2001. What we can and cannot learn about earthquake sources from the spectra of seismic waves. Bulletin of the Seismological Society of America, 91(2), 397–400.CrossRefGoogle Scholar
Beresnev, I. A. 2003. Uncertainties in finite-fault slip inversions: to what extent to believe? (a critical review). Bulletin of the Seismological Society of America, 93(6), 2445–2458.CrossRefGoogle Scholar
Bethmann, F., Deichmann, N., and Mai, P. M. 2011. Scaling relations of local magnitude versus moment magnitude for sequences of similar earthquakes in Switzerland. Bulletin of the Seismological Society of America, 101(2), 515–534.CrossRefGoogle Scholar
Bilek, S. L., and Lay, T. 1999. Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446.CrossRefGoogle Scholar
Biot, M. A. 1962a. General theory of 3-dimensional consolidation. Journal of Applied Physics, 12, 155–164.Google Scholar
Biot, M. A. 1962b. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4), 1482–1498.CrossRefGoogle Scholar
Biryukov, A. 2016. Design Optimization for a Local Seismograph Network: Application to the Liard Basin. Tech. rept. University of Calgary.Google Scholar
Boatwright, J. 1980. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bulletin of the Seismological Society of America, 70(1), 1–27.Google Scholar
Boese, C. M., Wotherspoon, L., Alvarez, M., and Malin, P. 2015. Analysis of anthropogenic and natural noise from multilevel borehole seismometers in an urban environment, Auckland, New Zealand. Bulletin of the Seismological Society of America, 105(1), 285–299.CrossRefGoogle Scholar
Bohnhoff, M., Dresen, G., Wellsworth, W. L., and Ito, H. 2010. Passive seismic monitoring of natural and induced earthquakes: Case studies, future directions and socio-economic relevance. Pages 261–285 of: Cloetingh, S., and Jegendank, J. (eds.), New Frontiers in Integrated Solid Earth Sciences. International Year of Planet Earth. Netherlands: Springer.Google Scholar
Bommer, J. J., Oates, S., Cepeda, J. M., Lindholm, C., Bird, J., Torres, R., Marroquín, G., and Rivas, J. 2006. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Engineering Geology, 83(4), 287–306.CrossRefGoogle Scholar
Bommer, J. J., Crowley, H., and Pinho, R. 2015. A risk-mitigation approach to the management of induced seismicity. Journal of Seismology, 19(2), 623–646.CrossRefGoogle ScholarPubMed
Boness, N. L., and Zoback, M. D. 2006. A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics, 71(5), F131–F146.CrossRefGoogle Scholar
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. 2001. Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3), 347–383.CrossRefGoogle Scholar
Boore, D. M., and Boatwright, J. 1984. Average body-wave radiation coefficients. Bulletin of the Seismological Society of America, 74(5), 1615–1621.Google Scholar
Boroumand, N., and Eaton, D. W. 2012. Comparing energy calculations-hydraulic fracturing and microseismic monitoring. In: 74th EAGE Conference and Exhibition incorporating EUROPEC 2012.
Boroumand, N., and Eaton, D. W. 2015. Energy-based hydraulic fracture numerical simulation: Parameter selection and model validation using microseismicity. Geophysics, 80(5), W33–W44.CrossRefGoogle Scholar
Bott, M. H. P. 1959. The mechanics of oblique slip faulting. Geological Magazine, 96(02), 109–117.CrossRefGoogle Scholar
Boyd, O. S. 2006. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions. Computers & Geosciences, 32(2), 259–264.CrossRefGoogle Scholar
Bracewell, R. N. 1986. The Fourier Transform and its Applications. NewYork:McGraw-Hill.Google Scholar
Breede, K., Dzebisashvili, K., Liu, X., and Falcone, G. 2013. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy, 1(1), 4.CrossRefGoogle Scholar
Brown, E. T. 1970. Strength of models of rock with intermittent joints. Journal of Soil Mechanics & Foundations Div, 96(SM6), 1935–1949.Google Scholar
Brown, J. E., Thrasher, R. S., and Behrmann, L. A. 2000. Fracturing Operations. Pages 11–1 –11–33 of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation, 3rd edn. John Wiley & Sons.Google Scholar
Brown, S. R., and Bruhn, R. L. 1998. Fluid permeability of deformable fracture networks. Journal of Geophysical Research: Solid Earth, 103(B2), 2489–2500.CrossRefGoogle Scholar
Brudzinski, M. R., Skoumal, R., and Currie, B. S. 2016. Proximity of wastewater disposal and hydraulic fracturing to crystalline basement affects the likelihood of induced seismicity in the Central and Eastern United States. In: AGU 2016 Fall Meeting. American Geophysical Union.
Brune, J. N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009.CrossRefGoogle Scholar
Brune, J. N. 1971. Correction. Journal of Geophysical Research, 76, 5002.Google Scholar
Building Seismic Safety Council. 2003. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Tech. rept. FEMA-450. Federal Emergency Management Agency.
Burridge, R., and Knopoff, L. 1964. Body force equivalents for seismic dislocations. Bulletin of the Seismological Society of America, 54(6A), 1875–1888.Google Scholar
Byerlee, J. 1978. Friction of rocks. Pure and Applied Geophysics, 116(4), 615–626.CrossRefGoogle Scholar
Caffagni, E., Eaton, D., Van der Baan, M., and Jones, J. P. 2014. Regional seismicity: a potential pitfall for identification of long-period long-duration events. Geophysics, 80(1), A1–A5.Google Scholar
Caffagni, E., Eaton, D. W., Jones, J. P., and Van der Baan, M. 2016. Detection and analysis of microseismic events using a Matched Filtering Algorithm (MFA). Geophysical Journal International, 206(1), 644–658.Google Scholar
Cai, M., Kaiser, P. K., and Martin, C. D. 1998. A tensile model for the interpretation of microseismic events near underground openings. Seismicity Caused by Mines, Fluid Injections, Reservoirs, and Oil Extraction, 67–92.
CAPP. 2017. CAPP Hydraulic Fracturing Operating Practice: Anomalous induced seismicity: assessment, monitoring, mitigation and response. www.capp.ca/~/media/capp/customer-portal/publications/217532.pdf Accessed: 2017/07/27.
Carter, J. A., and Frazer, L. N. 1984. Accommodating lateral velocity changes in Kirchhoff migration by means of Fermat's principle. Geophysics, 49(1), 46–53.CrossRefGoogle Scholar
Carter, J. A., Barstow, N., Pomeroy, P. W., Chael, E. P., and Leahy, P. J. 1991. Highfrequency seismic noise as a function of depth. Bulletin of the Seismological Society of America, 81(4), 1101–1114.Google Scholar
Cary, P. W., and Eaton, D. W. 1993. A simple method for resolving large converted-wave (P-SV) statics. Geophysics, 58(3), 429–433.CrossRefGoogle Scholar
Castellanos, F., and Van der Baan, M. 2013. Microseismic event locations using the doubledifference algorithm. CSEG Recorder, 38(3), 26–37.Google Scholar
CCA. 2014. Environmental Impacts of Shale Gas Extraction in Canada. Tech. rept. Council of Canadian Academies.
Cesca, S., Rohr, A., and Dahm, T. 2013. Discrimination of induced seismicity by full moment tensor inversion and decomposition. Journal of Seismology, 17(1), 147–163.CrossRefGoogle Scholar
Chaisri, S., and Krebes, E. S. 2000. Exact and approximate formulas for P-SV reflection and transmission coefficients for a nonwelded contact interface. Journal of Geophysical Research: Solid Earth, 105(B12), 28045–28054.CrossRefGoogle Scholar
Chambers, K., Kendall, J-M., Brandsberg-Dahl, S., and Rueda, J. 2010. Testing the ability of surface arrays to monitor microseismic activity. Geophysical Prospecting, 58(5), 821–830.CrossRefGoogle Scholar
Chambers, K., Dando, B. D. E., Jones, G. A., Velasco, R., and Wilson, S. 2014. Moment tensor migration imaging. Geophysical Prospecting, 62(4), 879–896.CrossRefGoogle Scholar
Chapman, M. 2003. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophysical Prospecting, 51(5), 369–379.CrossRefGoogle Scholar
Charléty, J., Cuenot, N., Dorbath, L., Dorbath, C., Haessler, H., and Frogneux, M. 2007. Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous- Forêts. International Journal of Rock Mechanics and Mining Sciences, 44(8), 1091–1105.Google Scholar
Chen, W., Ni, S., Kanamori, H., Wei, S., Jia, Z., and Zhu, L. 2015. CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms. Seismological Research Letters, 86(2A), 432–441.CrossRefGoogle Scholar
Chester, F. M., Evans, J. P., and Biegel, R. L. 1993. Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research: Solid Earth, 98(B1), 771–786.CrossRefGoogle Scholar
Cieslik, K., and Artman, B. 2016. Signal to noise analysis of densely sampled microseismic data. In: 2016 Convention, CSPG CSEG CWLS, Expanded Abstracts.
Cipolla, C., and Wallace, J. 2014. Stimulated reservoir volume: a misapplied concept? In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
Cipolla, C. L., Maxwell, S. C., Mack, M. G., and Downie, R. C. 2011. A practical guide to interpreting microseismic measurements. In: SPE North American Unconventional Gas Conference and Exhibition. The Woodlands, Texas: Society of Petroleum Engineers.Google Scholar
Cipolla, C. L., Maxwell, S. C., and Mack, M. G. 2012. Engineering guide to the application of microseismic interpretations. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
Claerbout, J. F. 1985. Imaging the Earth's Interior. Oxford: Blackwell Scientific Publications.Google Scholar
Clarke, H., Eisner, L., Styles, P., and Turner, P. 2014. Felt seismicity associated with shale gas hydraulic fracturing: the first documented example in Europe. Geophysical Research Letters, 41(23), 8308–8314.CrossRefGoogle Scholar
Clarkson, C. R., and Williams-Kovacs, J. D. 2013a. Modeling two-phase flowback of multifractured horizontal wells completed in shale. SPE Journal, 18(04), 795–812.CrossRefGoogle Scholar
Clarkson, C. R., and Williams-Kovacs, J. D. 2013b. A new method for modeling multiphase flowback of multi-fractured horizontal tight oil wells to determine hydraulic fracture properties. In: SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers.Google Scholar
Clarkson, C. R., Qanbari, F., and Williams-Kovacs, J. D. 2014. Innovative use of ratetransient analysis methods to obtain hydraulic-fracture properties for low-permeability reservoirs exhibiting multiphase flow. The Leading Edge, 33(10), 1108–1122.CrossRefGoogle Scholar
Close, D., Cho, D., Horn, F., and Edmundson, H. 2009. The sound of sonic: a historical perspective and introduction to acoustic logging. CSEG Recorder, 34(5), 34–43.Google Scholar
Constien, V. G., Hawkins, G. W., Prud'homme, R. K., and Navarret, R. 2000. Performance of Fracturing Materials. Pages 8–1 –8–26 of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation. John Wiley & Sons.Google Scholar
Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90), 297–301.CrossRefGoogle Scholar
Cornell, C. A. 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.Google Scholar
Cornet, F. H., Bérard, T., and Bourouis, S. 2007. How close to failure is a granite rock mass at a 5km depth? International Journal of Rock Mechanics and Mining Sciences, 44(1), 47–66.Google Scholar
Courtney, E. C. 2000. The Mechanical Behavior of Materials. Waveland Press.Google Scholar
Cox, S. F. 2016. Injection-driven swarm seismicity and permeability enhancement: implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes. Economic Geology, 111(3), 559–587.CrossRefGoogle Scholar
Crampin, S., Chesnokov, E. M., and Hipkin, R. G. 1984. Seismic anisotropy –the state of the art: II. Geophysical Journal International, 76(1), 1–16.CrossRefGoogle Scholar
Cummings, R. G., and Morris, G. E. 1979. Economic Modelling of Electricity Production from Hot Dry Rock Geothermal Reservoirs: Methodology and Analyses. Tech. rept. EPRI-EA-630. United States Department of Energy.
Dahm, T., Becker, D., Bischoff, M., Cesca, S., Dost, B., Fritschen, R., Hainzl, S., Klose, C. D., Kühn, D., Lasocki, S., Meier, T., Ohrnberger, M., Rivalta, E., Wegler, U., and Husen, S. 2013. Recommendation for the discrimination of human-related and natural seismicity. Journal of Seismology, 17(1), 197–202.CrossRefGoogle Scholar
Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar, S., Miller, D. E., Goetz, J., Henninges, J., and Lueth, S. 2013. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. The Leading Edge, 32(6), 699–706.CrossRefGoogle Scholar
Daneshy, A. A. 1978. Numerical solution of sand transport in hydraulic fracturing. Journal of Petroleum Technology, 30(1), 132–140.CrossRefGoogle Scholar
Daniels, J. L., Waters, G. A., Le Calvez, J. H., Bentley, D., and Lassek, J. T. 2007. Contacting more of the Barnett Shale through an integration of real-time microseismic monitoring, petrophysics, and hydraulic fracture design. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Dankbaar, J. W. M. 1985. Separation of P- and S-waves. Geophysical Prospecting, 33(7), 970–986.CrossRefGoogle Scholar
Darbyshire, F. A., Eaton, D. W., and Bastow, I. D. 2013. Seismic imaging of the lithosphere beneath Hudson Bay: episodic growth of the Laurentian mantle keel. Earth and Planetary Science Letters, 373, 179–193.CrossRefGoogle Scholar
Darold, A. P., and Holland, A. A. 2015. Preliminary Oklahoma optimal fault orientations. Tech. rept. Open File Report OF4. Oklahoma Geological Survey.
Das, I., and Zoback, M. D. 2013. Long-period, long-duration seismic events during hydraulic stimulation of shale and tight-gas reservoirs –Part 1: Waveform characteristics. Geophysics, 78(6), KS97–KS108.Google Scholar
Davies, D., Kelly, E. J., and Filson, J. R. 1971. Vespa process for analysis of seismic signals. Nature, 232, 8–13.Google Scholar
Davies, R., Foulger, G., Bindley, A., and Styles, P. 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Marine and Petroleum Geology, 45, 171–185.CrossRefGoogle Scholar
Davis, S. D., and Frohlich, C. 1993. Did (or will) fluid injection cause earthquakes? –criteria for a rational assessment. Seismological Research Letters, 64(3–4), 207–224.Google Scholar
De Meersman, K., Van der Baan, M., and Kendall, J.-M. 2006. Signal extraction and automated polarization analysis of multicomponent array data. Bulletin of the Seismological Society of America, 96(6), 2415–2430.CrossRefGoogle Scholar
De Meersman, K., Kendall, J.-M., and Van der Baan, M. 2009. The 1998 Valhall microseismic data set: an integrated study of relocated sources, seismic multiplets, and S-wave splitting. Geophysics, 74(5), B183–B195.CrossRefGoogle Scholar
Deichmann, N., and Giardini, D. 2009. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismological Research Letters, 80(5), 784–798.CrossRefGoogle Scholar
Deng, K., Liu, Y., and Harrington, R. M. 2016. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophysical Research Letters, 43(16), 8482–8491.CrossRefGoogle Scholar
Denlinger, R. P., and Bufe, C. G. 1982. Reservoir conditions related to induced seismicity at the Geysers steam reservoir, northern California. Bulletin of the Seismological Society of America, 72(4), 1317–1327.Google Scholar
Der Kiureghian, A., and Ditlevsen, O. 2009. Aleatory or epistemic? Does it matter? Structural Safety, 31(2), 105–112.
Detring, J., and Williams-Stroud, S. C. 2012. Using microseismicity to understand subsurface fracture systems and increase the effectiveness of completions: Eagle Ford formation, Texas. In: SPE Canadian Unconventional Resources Conference. Society of Petroleum Engineers.
Dettmer, J., Benavente, R., Cummins, P. R., and Sambridge, M. 2014. Trans-dimensional finite-fault inversion. Geophysical Journal International, 199(2), 735–751.CrossRefGoogle Scholar
Di Bona, M. 2016. A local magnitude scale for crustal earthquakes in Italy. Bulletin of the Seismological Society of America, 106(1), 242–258.CrossRefGoogle Scholar
Dieterich, J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99(B2), 2601–2618.CrossRefGoogle Scholar
Dieterich, J. H. 1972. Time-dependent friction in rocks. Journal of Geophysical Research, 77(20), 3690–3697.CrossRefGoogle Scholar
Dieterich, J. H. 1978. Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics, 116(4-5), 790–806.CrossRefGoogle Scholar
Dinske, C., and Shapiro, S. A. 2013. Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity. Journal of Seismology, 17(1), 13–25.CrossRefGoogle Scholar
Dohmen, T., Zhang, J., Barker, L., and Blangy, J. P. 2017. Microseismic magnitudes and b-values for delineating hydraulic fracturing and depletion. SPE Journal, SPE 186096.
Dorbath, L., Cuenot, N., Genter, A., and Frogneux, M. 2009. Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections. Geophysical Journal International, 177(2), 653–675.CrossRefGoogle Scholar
Duhault, J. L. J. 2012. Cardium microseismic west central Alberta: a case history. CSEG Recorder, 37(8), 48–57.Google Scholar
Duncan, P. M. 2005. Is there a future for passive seismic? First Break, 23(6), 111–115.Google Scholar
Duncan, P. M., and Eisner, L. 2010. Reservoir characterization using surface microseismic monitoring. Geophysics, 75(5), 139–146.CrossRefGoogle Scholar
Dusseault, M., and McLennan, J. 2011. Massive multistage hydraulic fracturing: where are we. In: 45th US Rock Mechanics/Geomechanics Symposium, San Francisco.
Dutta, N. C., and Odé, H. 1979. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model) –Part II: Results. Geophysics, 44(11), 1789–1805.Google Scholar
Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852.CrossRefGoogle Scholar
Earle, P. S., and Shearer, P. M. 1994. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2), 366–376.Google Scholar
Eaton, D. W. 1989. The free surface effect: implications for amplitude-versus-offset inversion. Canadian Journal of Exploration Geophysics, 25, 97–103.Google Scholar
Eaton, D. W. 2014. Alberta Telemetered Seismograph Network (ATSN): Real-time monitoring of seismicity in northern Alberta. CSEG Recorder, 39(9), 30–33.Google Scholar
Eaton, D. W. 2016. Injection-induced seismicity: an academic perspective. Canadian Energy Technology and Innovation Journal, 2(4), 34–41.Google Scholar
Eaton, D. W., and Caffagni, E. 2015. Enhanced downhole microseismic processing using matched filtering analysis (MFA). First Break, 33(7), 49–55.Google Scholar
Eaton, D. W., and Forouhideh, F. 2011. Solid angles and the impact of receiver-array geometry on microseismic moment-tensor inversion. Geophysics, 76(6), WC77–WC85.CrossRefGoogle Scholar
Eaton, D. W., and Maghsoudi, S. 2015. 2b… or not 2b? Interpreting magnitude distributions from microseismic catalogs. First Break, 33(10), 79–86.Google Scholar
Eaton, D. W., and Mahani, A. B. 2015. Focal mechanisms of some inferred induced earthquakes in Alberta, Canada. Seismological Research Letters, 86(4), 1078–1085.CrossRefGoogle Scholar
Eaton, D. W., Adams, J., Asudeh, I., Atkinson, G. M., Bostock, J. F., Cassidy, J. F., Ferguson, I. J., Samson, C., Snyder, D. B., Timapo, K. F., and Unsworth, M. J. 2005, 169–176. Investigating Canada's lithosphere and earthquake hazards with portable arrays.EOS Transactions of the American Geophysical Union, 86(17).
Eaton, D. W., Akram, J., St-Onge, A., and Forouhideh, F. 2011. Determining microseismic event locations by semblance-weighted stacking. In: Proceedings of the CSPG CSEG CWLS Convention.
Eaton, D. W., Davidsen, J., Pedersen, P. K., and Boroumand, N. 2014a. Breakdown of the Gutenberg–Richter relation for microearthquakes induced by hydraulic fracturing: influence of stratabound fractures. Geophysical Prospecting, 62(4), 806–818.CrossRefGoogle Scholar
Eaton, D. W., Rafiq, A., Pedersen, P., and Van der Baan, M. 2014b. Microseismic expression of natural fracture activation in a tight sand reservoir. Pages 19–22 of: Proceedings of the 1st International Conference on Discrete Fracture Network Engineering.
Eaton, D. W., Caffagni, E., Van der Baan, M., and Matthews, L. 2014c. Passive seismic monitoring and integrated geomechanical analysis of a tight-sand reservoir during hydraulic-fracture treatment, flowback and production. Pages 1537–1545 of: Unconventional Resources Technology Conference (URTEC). Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
Eaton, D. W., Van der Baan, M., Birkelo, B., and Tary, J.-B. 2014d. Scaling relations and spectral characteristics of tensile microseisms: Evidence for opening/closing cracks during hydraulic fracturing. Geophysical Journal International, 196(3), 1844–1857.CrossRefGoogle Scholar
Eaton, D. W., Cheadle, B., and Fox, A. 2016a. A causal link between overpressured hydrocarbon source rocks and seismicity induced by hydraulic fracturing. In: SSA 2016 Annual Meeting. Seismological Society of America.
Eaton, D. W., Van der Baan, M., and Ingelson, A. 2016b. Terminology for fluid-injection induced seismicity in oil and gas operations. CSEG Recorder, 41(4), 24–28.Google Scholar
Eaton, J. P. 1992. Determination of amplitude and duration magnitudes and site residuals from short-period seismographs in Northern California. Bulletin of the Seismological Society of America, 82(2), 533–579.Google Scholar
Eberhart-Phillips, D., and Oppenheimer, D. H. 1984. Induced seismicity in The Geysers geothermal area, California. Journal of Geophysical Research: Solid Earth, 89(B2), 1191–1207.Google Scholar
Economides, M. J. and Nolte, K. G. 2000. Reservoir Stimulation. 3rd edn. Vol. 18. Wiley New York.Google Scholar
Edwards, B., Kraft, T., Cauzzi, C., Kästli, P., and Wiemer, S. 2015. Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophysical Journal International, 201(2), 1020–1037.CrossRefGoogle Scholar
Ehlig-Economides, C. A., and Economides, M. J. 2000. Formation Characterization: Well and Reservoir Testing. Pages 2–1 –2–25 of: Economides, M. J. (ed.), Reservoir Stimulation, 3rd edn. John Wiley & Sons.
EIA. 2015. World Shale Resource Assessments. Tech. rept. Energy Information Agency.
Eisner, L., Abbott, D., Barker, W. B., Lakings, J., and Thornton, M. P. 2008. Noise suppression for detection and location of microseismic events using a matched filter. Pages 1431–1435 of: SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists.
Eisner, L., Fischer, T., and Rutledge, J. T. 2009a. Determination of S-wave slowness from a linear array of borehole receivers. Geophysical Journal International, 176(1), 31–39.CrossRefGoogle Scholar
Eisner, L., Duncan, P. M., Heigl, W. M., and Keller, W. R. 2009b. Uncertainties in passive seismic monitoring. The Leading Edge, 28(6), 648–655.CrossRefGoogle Scholar
Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., and Keller, W. 2010. Comparison of surface and borehole locations of induced seismicity. Geophysical Prospecting, 58(5), 809–820.CrossRefGoogle Scholar
Eisner, L., Thornton, M., and Griffin, J. 2011a. Challenges for microseismic monitoring. Pages 1519–1523 of: SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists.
Eisner, L., De La Pena, A., Wessels, S., Barker, W., and Heigl, W. 2011b. Why surface monitoring of microseismic events works. In: Third EAGE Passive Seismic Workshop- Actively Passive 2011.
Ejofodomi, E. A., Yates, M., Downie, R., Itibrout, T., and Catoi, O. A. 2010. Improving well completion via real-time microseismic monitoring: a west Texas case study. In: Tight Gas Completions Conference. Society of Petroleum Engineers.
Ekström, G., Nettles, M., and Dziewonski, A. M. 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9.
El-Isa, Z. H., and Eaton, D. W. 2014. Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics, 615, 1–11.Google Scholar
Ellsworth, W. L. 2013. Injection-induced earthquakes. Science, 341(6142), 1225942.CrossRefGoogle ScholarPubMed
EPA. 2004. Evaluation of Impacts to Underground Sources of DrinkingWater by Hydraulic Fracturing of Coalbed Methane Reservoirs. Tech. rept. EPA 816-R-04-003. United States Environmental Protection Agency.
EPA. 2017. Class II Oil and Gas Related Injection Wells. Tech. rept. US Environmental Protection Agency, www.epa.gov/uic/class-ii-oil-and-gas-related-injection-wells.
Esmersoy, C., and Miller, D. 1989. Backprojection versus backpropagation in multidimensional linearized inversion. Geophysics, 54(7), 921–926.CrossRefGoogle Scholar
Esmersoy, C., Koster, K., Williams, M., Boyd, A., and Kane, M. 1994. Dipole shear anisotropy logging. Pages 1139–1142 of: SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists.
Evans, K. F., Zappone, A., Kraft, T., Deichmann, N., and Moia, F. 2012. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics, 41, 30–54.CrossRefGoogle Scholar
Ewy, R. T. 1999. Wellbore-stability predictions by use of a modified Lade criterion. SPE Drilling & Completion, 14(02), 85–91.CrossRefGoogle Scholar
Farahbod, A. M., Kao, H., Cassidy, J. F., and Walker, D. 2015a. How did hydraulicfracturing operations in the Horn River Basin change seismicity patterns in northeastern British Columbia, Canada? The Leading Edge, 34(6), 658–663.CrossRefGoogle Scholar
Farahbod, A. M., Kao, H., Walker, D. M., and Cassidy, J. F. 2015b. Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia. Canadian Journal of Earth Sciences, 52(2), 112–122.CrossRefGoogle Scholar
Fereidoni, A., and Cui, L. 2015. Composite Alberta Seismicity Catalog, www.induced seismicity.ca/catalogues.
Feroz, A., and Van der Baan, M. 2013. Uncertainties in microseismic event locations for horizontal, vertical, and deviated boreholes. Pages 592–596 of: SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists.
Fink, M. 1999. Time-reversed acoustics. Scientific American, 281(5), 91–97.CrossRefGoogle Scholar
Firdaouss, M., Guermond, J.-L., and Le Quéré, P. 1997. Nonlinear corrections to Darcy's law at low Reynolds numbers. Journal of Fluid Mechanics, 343, 331–350.CrossRefGoogle Scholar
Fischer, T., and A., Guest 2011. Shear and tensile earthquakes caused by fluid injection, Geophys. Res. Lett., 38, L05307, doi:10.1029/2010GL045447.CrossRefGoogle Scholar
Fischer, T., Horálek, J., Hrubcová, P., Vavryčuk, V., Bräuer, K., and Kämpf, H. 2014. Intra-continental earthquake swarms inWest-Bohemia and Vogtland: a review. Tectonophysics, 611, 1–27.CrossRefGoogle Scholar
Fisher, M. K., and Warpinski, N. R. 2012. Hydraulic-fracture-height growth: Real data. SPE Production & Operations, 27(1), 8–19.CrossRefGoogle Scholar
Fisher, M. K., Wright, C. A., Davidson, B. M., Goodwin, A. K., Fielder, E. O., Buckler, W. S., and Steinsberger, N. P. 2002. Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale. In: SPE Annual Technical Conference and Exhibition.
San Antonio, Texas: Society of Petroleum Engineers. Flumerfelt, R. 2015. Appraisal and development of the Midland Basin Wolfcamp Shale. Houston Geological Society Bulletin, 57(7), 9–11.
Fossen, H. 2016. Structural Geology. 2nd edn. Cambridge University Press.Google Scholar
Fossen, H., Schultz, R. A., Shipton, Z. K., and Mair, K. 2007. Deformation bands in sandstone: a review. Journal of the Geological Society, 164(4), 755–769.CrossRefGoogle Scholar
Foulger, G. R., Julian, B. R., Hill, D. P., Pitt, A. M., Malin, P. E., and Shalev, E. 2004. Nondouble- couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing. Journal of Volcanology and Geothermal Research, 132(1), 45–71.CrossRefGoogle Scholar
Fowler, C. M. R. 2004. The Solid Earth: An Introduction to Global Geophysics. 2nd edn. Cambridge University Press.
Freed, A. F. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci., 33, 335–367.CrossRefGoogle Scholar
Friberg, P. A., Besana-Ostman, G. M., and Dricker, I. 2014. Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio. Seismological Research Letters, 85(6), 1295–1307.CrossRefGoogle Scholar
Fritz, R. D., Medlock, P., Kuykendall, M. J., and Wilson, J. L. 2012. The geology of the Arbuckle Group in the midcontinent: sequence stratigraphy, reservoir development, and the potential for hydrocarbon exploration. Pages 203–273 of: Derby, J. R., Fritz, R. D., Longacre, S. A., Morgan, W. A., and Sternbach, C. A. (eds), The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk megasequence of Laurentia. AAPG Memoir, vol. 98. AAPG.
Gadde, P. B., Liu, Y., Norman, J., Bonnecaze, R., and Sharma, M. M. 2004. Modeling proppant settling in water-fracs. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Gajewski, D., and Tessmer, E. 2005. Reverse modelling for seismic event characterization. Geophysical Journal International, 163(1), 276–284.CrossRefGoogle Scholar
Garagash, D. I., and L. N. Germanovich 2012. Nucleation and arrest of dynamic slip on a pressurized fault, J. Geophys. Res., 117, B10310, doi:10.1029/2012JB009209.CrossRef
Garbin, H. D., and Knopoff, L. 1975. Elastic moduli of a medium with liquid-filled cracks. Quarterly of Applied Mathematics, 33(3), 301–303.CrossRefGoogle Scholar
Gassman, F. 1951. Uber die elastisitat poroser medien. Naturforschenden Gesellschaft Vierteljahrschrift, Zurich, 96(1), 1–23.Google Scholar
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P., vanWees, J., and Kohl, T. 2015. Induced seismicity in geothermal reservoirs: a review of forecasting approaches. Renewable and Sustainable Energy Reviews, 52, 1473–1490.CrossRefGoogle Scholar
Geertsma, J., and De Klerk, F. 1969. A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21(12), 1571–1581.CrossRefGoogle Scholar
Geiger, L. 1912. Probability method for the determination of earthquake epicenters from the arrival time only. Bulletin of St. Louis University, 8(1), 56–71.Google Scholar
Gephart, J. W., and Forsyth, D. W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. Journal of Geophysical Research: Solid Earth, 89(B11), 9305–9320.CrossRefGoogle Scholar
Ghofrani, H., and Atkinson, G. M. 2016. A preliminary statistical model for hydraulic fracture-induced seismicity in the Western Canada Sedimentary Basin. Geophysical Research Letters, 43(19), 10, 164–10, 172.CrossRefGoogle Scholar
Giardini, D. 2004. Seismic hazard assessment of Switzerland, 2004. Swiss Seismological Service: ETH.
Giardini, D. 2009. Geothermal quake risks must be faced. Nature, 462(7275), 848–849.CrossRefGoogle ScholarPubMed
Gibowicz, S. J., and Kijko, A. 1994. An Introduction to Mining Seismology. Vol. 55. Academic Press.CrossRefGoogle Scholar
Gilbert, F. 1971. Excitation of the normal modes of the Earth by earthquake sources. Geophysical Journal International, 22(2), 223–226.CrossRefGoogle Scholar
Glover, K., Bozarth, T., Cui, A., and Wust, R. 2015. Lithological controls on mechanical anisotropy in shales to predict in situ stress magnitudes and potential for shearing of laminations during fracturing. In: SPE/CSUR Unconventional Resources Conference. Society of Petroleum Engineers.
Goertz-Allmann, B. P., Kühn, D., Oye, V., Bohloli, B., and Aker, E. 2014. Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site. Geophysical Journal International, 198(1), 447–461.CrossRefGoogle Scholar
Grassberger, P., and Procaccia, I. 1983. Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9(1–2), 189–208.CrossRefGoogle Scholar
Grechka, V. 2010. Data-acquisition design for microseismic monitoring. The Leading Edge, 29(3), 278–282.CrossRefGoogle Scholar
Griffith, A. A. 1921. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, Series A, 221, 163–198.CrossRefGoogle Scholar
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S., and Dahm, T. 2017. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Reviews of Geophysics.
Grob, M., and Van der Baan, M. 2011. Inferring in-situ stress changes by statistical analysis of microseismic event characteristics. The Leading Edge, 30(11), 1296–1301.CrossRefGoogle Scholar
Gruner, J. W. 1932. The crystal structure of kaolinite. Zeitschrift für Kristallographie- Crystalline Materials, 83(1–6), 75–88.Google Scholar
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and Elsworth, D. 2015. Seismicity triggered by fluid injection–induced aseismic slip. Science, 348(6240), 1224–1226.CrossRefGoogle ScholarPubMed
Gulrajani, S. N., and Nolte, K. G. 2000. Fracture Evalution Using Pressure Diagnostics. Pages 9–1 –9–63 of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation, 3rd edn. John Wiley & Sons.Google Scholar
Gutenberg, B. 1945a. Amplitudes of P, PP, and S and magnitude of shallow earthquakes. Bulletin of the Seismological Society of America, 35(2), 57–69.Google Scholar
Gutenberg, B. 1945b. Amplitudes of surface waves and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America, 35(1), 3–12.Google Scholar
Gutenberg, B., and Richter, C. F. 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.Google Scholar
Hakala, M., Hudson, J. A., and Christiansson, R. 2003. Quality control of overcoring stress measurement data. International Journal of Rock Mechanics and Mining Sciences, 40(7), 1141–1159.CrossRefGoogle Scholar
Halleck, P. M. 2000. Appendix: Understanding perforator penetration and flow performance. Pages A11–1 –A11–12 of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation. John Wiley & Sons.
Hanks, T. C., and Kanamori, H. 1979. A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350.CrossRefGoogle Scholar
Hansen, S. M., and Schmandt, B. S. 2015. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array. Geophysical Research Letters, 42(18), 7390–7397.CrossRefGoogle Scholar
Hardebeck, J. L., and Hauksson, E. 2001. Stress orientations obtained from earthquake focal mechanisms: what are appropriate uncertainty estimates? Bulletin of the Seismological Society of America, 91(2), 250–262.CrossRefGoogle Scholar
Häring, M. O., Schanz, U., Ladner, F., and Dyer, B. C. 2008. Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 37(5), 469–495.CrossRefGoogle Scholar
Harris, D. B. 2006. Subspace Detectors: Theory. US Department of Energy.
Hashin, Z., and Shtrikman, S. 1962. A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10(4), 343–352.CrossRefGoogle Scholar
Hashin, Z., and Shtrikman, S. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127–140.CrossRefGoogle Scholar
Haskell, N. A. 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54(6A), 1811–1841.Google Scholar
Hayes, B. J. R., Christopher, J. E., Rosenthal, L., Los, G., McKercher, B., Minken, D., Tremblay, Y. M., Fennell, J., and Smith, D. G. 1994. Cretaceous Mannville Group of the western Canada sedimentary basin. Pages 317–334 of: Geological Atlas of the Western Canada sedimentary basin, vol. 4. Canadian Society of Petroleum Geologists and Alberta Research Council.
Healy, J. H., Rubey, W. W., Griggs, D. T., and Raleigh, C. B. 1968. The Denver earthquakes. Science, 161(3848), 1301–1310.CrossRefGoogle ScholarPubMed
Heidbach, O., Tingay, T., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B. 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1–4), 3–15.CrossRefGoogle Scholar
Helffrich, G., Wookey, J., and Bastow, I. 2013. The Seismic Analysis Code: A Primer and User's Guide. Cambridge University Press.CrossRefGoogle Scholar
Helmstetter, A., D. Sornette, and J.-R. Grasso 2003. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res., 108, 2046, doi:10.1029/2002JB001991, B1.CrossRef
Herrmann, R. B., Park, S.-K., and Wang, C.-Y. 1981. The Denver earthquakes of 1967–1968. Bulletin of the Seismological Society of America, 71(3), 731–745.Google Scholar
Hill, R. 1963. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5), 357–372.CrossRefGoogle Scholar
Hirata, T. 1989. A correlation between the b value and the fractal dimension of earthquakes. Journal of Geophysical Research: Solid Earth, 94(B6), 7507–7514.CrossRefGoogle Scholar
Hoek, E., and Brown, E. T. 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1165–1186.Google Scholar
Hoek, E., Stagg, K. G., and Zienkiewicz, O. C. 1968. Brittle fracture of rock. Pages 99–124 of: Rock Mechanics in Engineering Practice. Wiley Series in Numerical Methods in Engineering Series. Wiley.
Hoek, E., Carranza-Torres, C., and Corkum, B. 2002. Hoek–Brown failure criterion –2002 edition. Proceedings of NARMS-TAC Conference, 1, 267–273.Google Scholar
Holland, A. A. 2013. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bulletin of the Seismological Society of America, 103(3), 1784–1792.CrossRefGoogle Scholar
Hornbach, M. J., DeShon, H. R., Ellsworth, W. L., Stump, B. W., Hayward, C., Frohlich, C., Oldham, H. R., Olson, J. E., Magnani, M. B., Brokaw, C., and Luetgert, J. H. 2015. Causal factors for seismicity near Azle, Texas. Nature Communications, 6, 6728.CrossRefGoogle ScholarPubMed
Hough, S. E. 2014. Shaking from injection-induced earthquakes in the central and eastern United States. Bulletin of the Seismological Society of America, 104(5), 2619–2626.CrossRefGoogle Scholar
Hudson, J. A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1), 133–150.CrossRefGoogle Scholar
Hudson, J. A., Pearce, R. G., and Rogers, R. M. 1989. Source type plot for inversion of the moment tensor. Journal of Geophysical Research: Solid Earth, 94(B1), 765–774.CrossRefGoogle Scholar
Hudson, J. A., Liu, E., and Crampin, S. 1996. The mechanical properties of materials with interconnected cracks and pores. Geophysical Journal International, 124(1), 105–112.CrossRefGoogle Scholar
Husen, S., Kissling, E., and von Deschwanden, A. 2013. Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: hypocenter locations and source dimensions. Journal of Seismology, 17(1), 63–81.CrossRefGoogle Scholar
Hutton, L. K., and Boore, D. M. 1987. The ML scale in southern California. Bulletin of the Seismological Society of America, 77(6), 2074–2094.Google Scholar
Ibs-von Seht, M., Plenefisch, T., and Klinge, K. 2008. Earthquake swarms in continental rifts—a comparison of selected cases in America, Africa and Europe. Tectonophysics, 452(1), 66–77.CrossRefGoogle Scholar
Igonin, N., and Eaton, D. 2017. A comparison of surface and near-surface acquisition techniques for induced seismicity and microseismic monitoring. In: 79th EAGE Conference and Exhibition.
Inamdar, A. A., Ogundare, T. M., Malpani, R., Atwood, W. K., Brook, K., Erwemi, A. M., and Purcell, D. 2010. Evaluation of stimulation techniques using microseismic mapping in the Eagle Ford Shale. In: Tight Gas Completions Conference. San Antonio, Texas: Society of Petroleum Engineers.
Ingate, S. F., Husebye, E. S., and Christoffersson, A. 1985. Regional arrays and optimum data processing schemes. Bulletin of the Seismological Society of America, 75(4), 1155–1177.Google Scholar
International Seismological Centre. 2014. On-line Bulletin, www.isc.ac.uk. IRIS. 2017. Background Page to Accompany the Animations on the Website: IRIS Animations. www.iris.edu/hq/inclass/downloads/optional/261.Accessed: 2017/07/27.
Irving, J. D., Knoll, M. D., and Knight, R. J. 2007. Improving crosshole radar velocity tomograms: a new approach to incorporating high-angle traveltime data. Geophysics, 72(4), J31–J41.CrossRefGoogle Scholar
Irwin, G. R. 1948. Fracture dynamics. Fracturing of Metals, 152.Google Scholar
Ishimoto, M., and Iida, K. 1939. Observations of earthquakes registered with the microseismograph constructed recently. Bulletin of the Earthquake Research Institute, 17(443–478), 391.Google Scholar
on Improved Seismic Safety Provisions, BSSC Program, and Agency, United States. Federal Emergency Management. 1997. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures: Provisions. Vol. 302. FEMA.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. 2009. Fundamentals of RockMechanics. 4th edn. Wiley-Blackwell.
Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data clustering: a review. ACMComputing Surveys (CSUR), 31(3), 264–323.Google Scholar
Johnson, D. H., and Dudgeon, D. E. 1992. Array Signal Processing: Concepts and Techniques. Simon & Schuster.Google Scholar
Johnston, A. C., Coppersmith, K. J., Kanter, L. R., and Cornell, C. A. 1994. The Earthquakes of Stable Continental Regions. Tech. rept. TR-102261. Electric Power Research Insitute (EPRI).
Jones, A. G., Evans, R. L., and Eaton, D. W. 2009. Velocity–conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin–Shtrikman extremal bounds. Lithos, 109(1–2), 131–143.CrossRefGoogle Scholar
Jones, G. A., Raymer, D., Chambers, K., and Kendall, J.-M. 2010. Improved microseismic event location by inclusion of a priori dip particle motion: a case study from Ekofisk. Geophysical Prospecting, 58(5), 727–737.CrossRefGoogle Scholar
Jones, G. A., Kendall, J.-M., Bastow, I. D., and Raymer, D. G. 2014. Locatingmicroseismic events using borehole data. Geophysical Prospecting, 62(1), 34–49.Google Scholar
Jones, L. M., and Molnar, P. 1979. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. Journal of Geophysical Research: Solid Earth, 84(B7), 3596–3608.CrossRefGoogle Scholar
Jost, M. L., and Herrmann, R. B. 1989. A student's guide to and review of moment tensors. Seismological Research Letters, 60(2), 37–57.Google Scholar
Julian, B. R., Miller, A. D., and Foulger, G. R. 1998. Non-double-couple earthquakes 1. Theory. Reviews of Geophysics, 36(4), 525–549.CrossRefGoogle Scholar
Jurkevics, A. 1988. Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, 78(5), 1725–1743.Google Scholar
Kagan, Y. Y. 2002. Seismic moment distribution revisited: I. Statistical results. Geophysical Journal International, 148(3), 520–541.CrossRefGoogle Scholar
Kagan, Y. Y. 2010. Earthquake size distribution: power-law with exponent? Tectonophysics, 490(1–2), 103–114.CrossRefGoogle Scholar
Kalahara, K. W. 1996. Estimation of in-situ stress profiles from well-logs. In: SPWLA 37th Annual Logging Symposium. New Orleans, Louisiana: Society of Petrophysicists and Well-log Analysts.Google Scholar
Kanamori, H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.CrossRefGoogle Scholar
Kanamori, H. 1983. Magnitude scale and quantification of earthquakes. Tectonophysics, 93(3–4), 185–199.CrossRefGoogle Scholar
Kanamori, H., and Anderson, D. L. 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.Google Scholar
Kanamori, H., and Brodsky, E. E. 2004. The physics of earthquakes. Reports on Progress in Physics, 67(8), 1429–1496.CrossRefGoogle Scholar
Kao, H., and Shan, S.-J. 2004. The source-scanning algorithm: mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589–594.CrossRefGoogle Scholar
Kao, H., Eaton, D. W., Atkinson, G. M., Maxwell, S., and Mahani, A. B. 2016. Technical Meeting on the Traffic Light Protocols (TLP) for Induced Seismicity: Summary and Recommendations. Open File Report 8075. Geological Survey of Canada.
Kent, A. H., Eaton, D. W., and Maxwell, S. C. 2017. Microseismic response and geomechanical principles of short interval re-injection (SIR) treatments. In: Unconventional Resources Technology Conference (URTEC).
Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., and Ge, S. 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451.CrossRefGoogle ScholarPubMed
Kern, L. R., Perkins, T. K., and Wyant, R. E. 1959. The mechanics of sand movement in fracturing. Journal of Petroleum Technology, 11(7), 55–57.CrossRefGoogle Scholar
Kim, W.-Y. 2013. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research: Solid Earth, 118(7), 3506–3518.Google Scholar
King, G. C. P., Stein, R. S., and Lin, J. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.Google Scholar
King, G. E. 2012. Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. In: SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas: Society of Petroleum Engineers.Google Scholar
King Hubbert, M. 1956. Darcy's law and the field equations of the flow of underground fluids. AIME Petroleum Transactions, 207, 222–239.Google Scholar
King Hubbert, M., and Rubey, W. W. 1959. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin, 70(2), 115–166.Google Scholar
Knapp, R. W., and Steeples, D. W. 1986. High-resolution common-depth-point seismic reflection profiling: Instrumentation. Geophysics, 51(2), 276–282.Google Scholar
Knopoff, L., and Randall, M. J. 1970. The compensated linear-vector dipole: a possible mechanism for deep earthquakes. Journal of Geophysical Research, 75(26), 4957–4963.CrossRefGoogle Scholar
Kohli, A. H., and Zoback, M. D. 2013. Frictional properties of shale reservoir rocks. Journal of Geophysical Research: Solid Earth, 118(9), 5109–5125.Google Scholar
Kratz, M., Hill, A., and Wessels, S. 2012. Identifying fault activation in unconventional reservoirs in real time using microseismic monitoring. In: SPE/EAGE European Unconventional Resources Conference & Exhibition –From Potential to Production.
Kratz, M., Teran, O., and Thornton, M. 2015. Use of automatic moment tensor inversion in real time microseismic imaging. Pages 1544–1549 of: Unconventional Resources Technology Conference. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
Krey, T., and Helbig, K. 1956. A theorem concerning anisotropy of stratified media and its significance for reflection seismics. Geophysical Prospecting, 4(3), 294–302.CrossRefGoogle Scholar
Kumar, D., and Ahmed, I. 2011. Seismic Noise. Pages 1157–1161 of: Encyclopedia of Solid Earth Geophysics. Springer.Google Scholar
Kwiatek, G., Bulut, F., Bohnhoff, M., and Dresen, G. 2014. High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador. Geothermics, 52, 98–111.CrossRefGoogle Scholar
Lakings, J. D., Duncan, P. M., Neale, C., and Theiner, T. 2006. Surface based microseismic monitoring of a hydraulic fracture well stimulation in the Barnett shale. Pages 605–608 of: SEG Technical Program Expanded Abstracts 2006. Society of Exploration Geophysicists.
Lamontagne, M., Lavoie, D., Ma, S., Burke, K. B. S., and Bastow, I. 2015. Monitoring the earthquake activity in an area with shale gas potential in southeastern New Brunswick, Canada. Seismological Research Letters, 86(4), 1068–1077.CrossRefGoogle Scholar
Langenbruch, C., and Zoback, M. D. 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science Advances, 2(11), e1601542.CrossRefGoogle ScholarPubMed
Lavrov, A. 2016. Dynamics of stresses and fractures in reservoir and cap rock under production and injection. Energy Procedia, 86, 381–390.CrossRefGoogle Scholar
Lay, T., and Wallace, T. C. 1995. Modern Global Seismology. Vol. 58. Academic Press.Google Scholar
Lee, W. H. K., Jennings, P., Kisslinger, C., and Kanamori, H. 2002. International Handbook of Earthquake & Engineering Seismology. Academic Press.Google Scholar
Leeman, E. R. 1968. The determination of the complete state of stress in rock in a single borehole—laboratory and underground measurements. Pages 31–38 of: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 5. Elsevier.
Leonard, M. 2010. Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988.CrossRefGoogle Scholar
Leonard, M. 2014. Self-consistent earthquake fault-scaling relations: update and extension to stable continental strike-slip faults. Bulletin of the Seismological Society of America, 2953–2965.
Levin, F. K. 1979. Seismic velocities in transversely isotropic media. Geophysics, 44(5), 918–936.CrossRefGoogle Scholar
Levin, S. A., Lewis, J., Hagelund, R., and Barrs, B. D. 2007. SEG-D for the next generation. The Leading Edge, 26(7), 854–855.CrossRefGoogle Scholar
Li, F., Rich, J., Marfurt, K. J., and Zhou, H. 2014. Automatic event detection on noisy microseismograms. Pages 2363–2367 of: SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists.
Li, L. X., and Wang, T. J. 2005. A unified approach to predict overall properties of composite materials. Materials Characterization, 54(1), 49–62.CrossRefGoogle Scholar
Liang, C., Thornton, M. P., Morton, P., Hulsey, B. J., Hill, A., and Rawlins, P. 2009. Improving signal-to-noise ratio of passsive seismic data with an adaptive FK filter. Pages 1703–1707 of: SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists.
Lindsay, R., and Van Koughnet, R. 2001. Sequential backus averaging: upscaling well logs to seismic wavelengths. The Leading Edge, 20(2), 188–191.CrossRefGoogle Scholar
Lomax, A., Michelini, A., and Curtis, A. 2014. Earthquake location, direct, global-search methods. Pages 1–33 of: Encyclopedia of Complexity and Systems Science. Springer.
Louis, L., Baud, P., and Wong, T.-F. 2007. Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography. London: Geological Society, Special Publications, 284(1), 127–146.CrossRefGoogle Scholar
Lund, B., and Slunga, R. 1999. Stress tensor inversion using detailed microearthquake information and stability constraints: application to Ölfus in southwest Iceland. Journal of Geophysical Research: Solid Earth, 104(B7), 14947–14964.CrossRefGoogle Scholar
Luo, Y., Marhoon, M., Al Dossary, S., and Alfaraj, M. 2002. Edge-preserving smoothing and applications. The Leading Edge, 21(2), 136–158.CrossRefGoogle Scholar
Ma, S., and Eaton, D. W. 2009. Anatomy of a small earthquake swarm in southern Ontario, Canada. Seismological Research Letters, 80(2), 214–223.CrossRefGoogle Scholar
Ma, S., and Eaton, D. W. 2011. Combining double-difference relocation with regional depth-phase modelling to improve hypocentre accuracy. Geophysical Journal International, 185(2), 871–889.CrossRefGoogle Scholar
Mack, M. G., and Warpinski, N. R. 2000. Mechanics of Hydraulic Fracturing. Pages 6–1 –4–49. of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation. JohnWiley & Sons.Google Scholar
Macosko, C. W. 1994. Rheology: Principles, Measurements, and Applications. NewYork: VCH.Google Scholar
Madariaga, R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666.Google Scholar
Madariaga, R. 2007. Seismic Source Theory. Pages 59–82 of: Kanamori, H. (ed.), Earthquake Seismology. Treatise on Geophysics, no. 4. Elsevier.
Maghsoudi, S., Eaton, D. W., and Davidsen, J. 2016. Nontrivial clustering of microseismicity induced by hydraulic fracturing. Geophysical Research Letters, 43(20), 10672–10679.CrossRefGoogle Scholar
Mahani, A. B., Kao, H., Walker, D., Johnson, J., and Salas, C. 2016. Regional Monitoring of Induced Seismicity in Northeastern British Columbia. Tech. rept. Report 2016-1. Geoscience BC.
Mahani, A. B., Schultz, R., Kao, H., Walker, D., Johnson, J., and Salas, C. 2017. Fluid injection and seismic activity in the Northern Montney Play, British Columbia, Canada, with special reference to the 17 August 2015 Mw 4.6 induced earthquake. Bulletin of the Seismological Society of America, 107(2), 542–552.CrossRefGoogle Scholar
Majer, E., Nelson, J., Robertson-Tait, A., Savy, J., and Wong, I. 2012. Protocol for addressing induced seismicity associated with enhanced geothermal systems. Tech. rept. DOE/EE-0662. US Department of Energy.
Majer, E. L., and McEvilly, T. V. 1979. Seismological investigations at The Geysers geothermal field. Geophysics, 44(2), 246–269.CrossRefGoogle Scholar
Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, W., and Asanuma, H. 2007. Induced seismicity associated with enhanced geothermal systems. Geothermics, 36(3), 185–222.CrossRefGoogle Scholar
Marinos, V., Marinos, P., and Hoek, E. 2005. The geological strength index: applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1), 55–65.CrossRefGoogle Scholar
Martakis, N., Kapotas, S., and Tselentis, G. 2006. Integrated passive seismic acquisition and methodology. Case Studies. Geophysical Prospecting, 54(6), 829–847.CrossRefGoogle Scholar
Martin, A. R., Cramer, D. D., Nunez, O., and Roberts, N. R. 2012. A method to perform multiple diagnostic fracture injection tests simultaneously in a single wellbore. In: SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas: Society of Petroleum Engineers.
Massé, R. P. 1981. Review of seismic source models for underground nuclear explosions. Bulletin of the Seismological Society of America, 71(4), 1249–1268.Google Scholar
Masters, J. A. 1979. Deep basin gas trap, western Canada. AAPG bulletin, 63(2), 152–181.Google Scholar
Maurer, H., Curtis, A., and Boerner, D. E. 2010. Recent advances in optimized geophysical survey design. Geophysics, 75(5), 75A177–75A194.CrossRefGoogle Scholar
Maxwell, S. C. 2009. Microseismic location uncertainty. CSEG Recorder, 34(4), 41–46.Google Scholar
Maxwell, S. C. 2010. Microseismic: Growth born from success. The Leading Edge, 29(3), 338–343.CrossRefGoogle Scholar
Maxwell, S. C. 2014. Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs. Distinguished Instructor Series. Society of Exploration Geophysicists.
Maxwell, S. C., and Cipolla, C. L. 2011. What does microseismicity tell us about hydraulic fracturing? In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Maxwell, S. C., and Le Calvez, J. H. 2010. Horizontal vs. vertical borehole-based microseismic monitoring: which is better? In: SPE Unconventional Gas Conference. Society of Petroleum Engineers.
Maxwell, S. C., and Parker, R. 2012. Microseismic monitoring of ball drops during hydraulic fracturing using sliding sleeves. CSEG Recorder, 37(8), 23–30.Google Scholar
Maxwell, S. C., and Urbancic, T. I. 2001. The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge, 20(6), 636–639.CrossRefGoogle Scholar
Maxwell, S. C., Urbancic, T. I., Steinsberger, N., Zinno, R., et al. 2002. Microseismic imaging of hydraulic fracture complexity in the Barnett shale. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Maxwell, S. C., Jones, M., Parker, R., Miong, S., Leaney, S., Dorval, D., D'Amico, D., Logel, J., Anderson, E., and Hammermaster, K. 2009. Fault activation during hydraulic fracturing. Pages 1552–1556 of: SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists.
Maxwell, S. C., Rutledge, J., Jones, R., and Fehler, M. 2010. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75(5), 75A129–75A137.CrossRefGoogle Scholar
Maxwell, S. C., Raymer, D., Williams, M., and Primiero, P. 2012. Tracking microseismic signals from the reservoir to surface. The Leading Edge, 31, 1301–1308.CrossRefGoogle Scholar
Maxwell, S. C., Mack, M., Zhang, F., Chorney, D., Goodfellow, S. D., and Grob, M. 2015. Differentiating wet and dry microseismic events induced during hydraulic fracturing. Pages 1513–1524 of: Unconventional Resources Technology Conference. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
Mayerhofer, M. J., Lolon, E., Warpinski, N. R., Cipolla, C. L., Walser, D. W., and Rightmire, C. L. 2010. What is stimulated reservoir volume? SPE Production & Operations, 25(01), 89–98.CrossRefGoogle Scholar
McClain, W. C. 1971. Seismic mapping of hydraulic fractures. Tech. rept. ORNL-TM-3502. Oak Ridge National Laboratory.
McClure, M., and Horne, R. 2013. Is pure shear stimulation always the mechanism of stimulation in EGS. Pages 11–13 of: Proceedings, Thirtyeight Workshop on Geothermal Reservoir Engineering.
McFadden, P. L., Drummond, B. J., and Kravis, S. 1986. The Nth-root stack: theory, applications, and examples. Geophysics, 51(10), 1879–1892.CrossRefGoogle Scholar
McGarr, A. 1976. Seismic moments and volume changes. Journal of Geophysical Research, 81(8), 1487–1494.CrossRefGoogle Scholar
McGarr, A. 2014. Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth, 119(2), 1008–1019.Google Scholar
McGarr, A., Simpson, D., and Seeber, L. 2002. Case histories of induced and triggered seismicity. Pages 647–661 of: Lee, W. H., Kanamori, H., Jennings, P. C., and Kisslinger, C. (eds), International Handbook of Earthquake & Engineering Seismology, Part A. Academic Press.Google Scholar
McGillivray, P. 2005. Microseismic and time-lapse seismic monitoring of a heavy oil extraction process at Peace River, Canada. CSEG Recorder, 30(1), 5–9.Google Scholar
McGuire, R. K. 2004. Analysis of Seismic Hazard and Risk. Oakland, California: Earthquake Engineering Research Center.Google Scholar
McGuire, R. K. 2008. Probabilistic seismic hazard analysis: early history. Earthquake Engineering & Structural Dynamics, 37(3), 329–338.CrossRefGoogle Scholar
McKenna, J. P. 2013. Magnitude-based calibrated discrete fracture network methodology. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
McKenna, J. P. 2014. Where did the proppant go? In: Unconventional Resources Technology Conference (URTEC).
McMechan, G. A. 1982. Determination of source parameters by wavefield extrapolation. Geophysical Journal International, 71(3), 613–628.CrossRefGoogle Scholar
Michael, A. J. 1984. Determination of stress from slip data: faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13), 11517–11526.CrossRefGoogle Scholar
Miller, A. D., Julian, B. R., and Foulger, G. R. 1998. Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill–Grensdalur volcanic complex, Iceland. Geophysical Journal International, 133(2), 309–325.CrossRefGoogle Scholar
Minson, S. E., and Dreger, D. S. 2008. Stable inversions for complete moment tensors. Geophysical Journal International, 174(2), 585–592.CrossRefGoogle Scholar
Mitchum, R. M., Vail, P. R., and Thompson, S. 1977. Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. Pages 53–62 of: Seismic Stratigraphy–Applications to Hydrocarbon Exploration, vol. Memoir 26. AAPG.
Mogi, K. 1963. Some discussions on aftershocks, foreshocks and earthquake swarms: the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. Bulletin of the Earthquake Research Institute, 41, 615–658.Google Scholar
Molenaar, M. M., Hill, D., Webster, P., Fidan, E., and Birch, W. 2012. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics. SPE Drilling & Completion, 27(01), 32–38.CrossRefGoogle Scholar
Montgomery, C. T., and Smith, M. B. 2010. Hydraulic fracturing: history of an enduring technology. Journal of Petroleum Technology, 62(12), 26–40.CrossRefGoogle Scholar
Moradi, S. 2016. Time-Lapse Numerical Modeling for a Carbon Capture and Storage (CCS) Project in Alberta, Using a Poroelastic Velocity-Stress Staggered-Grid Finite- Difference Method. Ph.D. thesis, University of Calgary.
Moriya, H., Niitsuma, H., and Baria, R. 2003. Multiplet-clustering analysis reveals structural details within the seismic cloud at the Soultz geothermal field, France. Bulletin of the Seismological Society of America, 93(4), 1606–1620.CrossRefGoogle Scholar
Muhuri, S. K., Dewers, T. A., Scott, T. E., and Reches, Z. 2003. Interseismic fault strengthening and earthquake-slip instability: friction or cohesion? Geology, 31(10), 881–884.CrossRefGoogle Scholar
Munjiza, A., Owen, D. R. J., and Bicanic, N. 1995. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering Computations, 12(2), 145–174.CrossRefGoogle Scholar
Musgrave, M. J. P. 2003. Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals. Acoustical Society of America.
Nagel, N., Sheibani, F., Lee, B., Agharazi, A., and Zhang, F. 2014. Fully-coupled numerical evaluations of multiwell completion schemes: the critical role of in-situ pressure changes and well configuration. In: SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas: Society of Petroleum Engineers.
Nagel, N. B., Garcia, X., Sanchez, M. A., and Lee, B. 2012. Understanding SRV: a numerical investigation of wet vs. dry microseismicity during hydraulic fracturing. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
National Energy Board. 2016. The Unconventional Gas Resources of Mississippian- Devonian Shales in the Liard Basin of British Columbia, the Northwest Territories and Yukon. Tech. rept. MR-14. National Energy Board.
National Research Council. 2013. Induced Seismicity Potential in Energy Technologies. National Academies Press.
NCEDC. 2014. Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC.CrossRef
Neidell, N. S., and Taner, M. T. 1971. Semblance and other coherency measures for multichannel data. Geophysics, 36(3), 482–497.CrossRefGoogle Scholar
Nettles, M., and Ekström, G. 1998. Faulting mechanism of anomalous earthquakes near Bardarbunga Volcano, Iceland. Journal of Geophysical Research: Solid Earth, 103(B8), 17973–17983.CrossRefGoogle Scholar
Newman, M. E. J. 2005. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46(5), 323–351.CrossRefGoogle Scholar
Nguyen, D. H., and Cramer, D. D. 2013. Diagnostic fracture injection testing tactics in unconventional reservoirs. In: SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas: Society of Petroleum Engineers.Google Scholar
Nicholson, C., and Wesson, R. L. 1992. Triggered earthquakes and deep well activities. Pure and Applied Geophysics, 139(3–4), 561–578.CrossRefGoogle Scholar
Nordgren, R. P. 1972. Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal, 12(04), 306–314.CrossRefGoogle Scholar
Norris, M. W., and Faichney, A. K. 2002. SEG Y rev 1 Data Exchange format. Tech. rept. Society of Exploration Geophysicists.
Odling, N. E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.-P., Christensen, N. P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarseth, E., Walsh, J. J., and Watterson, J. 1999. Variations in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs. Petroleum Geoscience, 5(4), 373–384.CrossRefGoogle Scholar
Ogata, Y., Matsu'ura, R. S., and Katsura, K. 1993. Fast likelihood computation of epidemic type aftershock-sequence model. Geophysical Research Letters, 20(19), 2143–2146.CrossRefGoogle Scholar
Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.Google Scholar
Oklahoma Produced Water Working Group. 2017. Oklahoma Water for 2060: Produced Water Reuse and Recycling. Tech. rept. Oklahoma Water Resources Board.
Ong, O. N., Schmitt, D. R., Kofman, R. S., and Haug, K. 2016. Static and dynamic pressure sensitivity anisotropy of a calcareous shale. Geophysical Prospecting, 64(4), 875–897.CrossRefGoogle Scholar
Oppenheim, A. V., and Schafer, R. W. 1975. Digital Signal Processing. Prentice-Hall.
Oprsal, I., and Eisner, L. 2014. Cross-correlation—an objective tool to indicate induced seismicity. Geophysical Journal International, 196(3), 1536–1543.CrossRefGoogle Scholar
Oye, V., and Roth, M. 2003. Automated seismic event location for hydrocarbon reservoirs. Computers & Geosciences, 29(7), 851–863.CrossRefGoogle Scholar
Pandolfi, D., Rebel-Schissele, E., Chambefort, M., and Bardainne, T. 2013. New design and advanced processing for frac jobs monitoring. In: 4th EAGE Passive Seismic Workshop.
Pao, Y.-H., and Varatharajulu, V. 1976. Huygens' principle, radiation conditions, and integral formulas for the scattering of elastic waves. Journal of the Acoustical Society of America, 59, 1361–1371.CrossRefGoogle Scholar
Pap, A. 1983. Source and receiver arrays. Tech. rept. Amoco Research.
Park, C. B., Miller, R. D., and Xia, J. 1999. Multichannel analysis of surface waves. Geophysics, 64(3), 800–808.CrossRefGoogle Scholar
Parkes, G., and Hegna, S. 2011. A marine seismic acquisition system that provides a full “ghost-free” solution. Pages 37–41 of: SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists.
Parotidis, M., Shapiro, S. A., and Rothert, E. 2004. Back front of seismicity induced after termination of borehole fluid injection. Geophysical Research Letters, 31(2).CrossRefGoogle Scholar
Parry, R. H. G. 2004. Mohr Circles, Stress Paths and Geotechnics. 2nd edn. London: Spon Press.CrossRefGoogle Scholar
Passarelli, L., Maccaferri, F., Rivalta, E., Dahm, T., and Boku, E. A. 2013. A probabilistic approach for the classification of earthquakes as “triggered” or “not triggered.” Journal of Seismology, 17(1), 165–187.Google Scholar
Pawlak, A., Eaton, D. W., Bastow, I. D., Kendall, J., Helffrich, G., Wookey, J., and Snyder, D. 2011. Crustal structure beneath Hudson Bay from ambient-noise tomography: Implications for basin formation. Geophysical Journal International, 184(1), 65–82.CrossRefGoogle Scholar
Perkins, T. K., and Kern, L. R. 1961. Widths of hydraulic fractures. Journal of Petroleum Technology, 13(09), 937–949.CrossRefGoogle Scholar
Pesicek, J. D., Child, D., Artman, B., and Cieslik, K. 2014. Picking versus stacking in a modern microearthquake location: comparison of results from a surface passive seismic monitoring array in Oklahoma. Geophysics, 79(6), KS61–KS68.CrossRefGoogle Scholar
Peters, D. C., and Crosson, R. S. 1972. Application of prediction analysis to hypocenter determination using a local array. Bulletin of the Seismological Society of America, 62(3), 775–788.Google Scholar
Petersen, M. D., Mueller, C. S., Moschetti, M. P., Hoover, S. M., Llenos, A. L., Ellsworth, W. L., Michael, A. J., Rubinstein, J. L., McGarr, A. F., and Rukstales, K. S. 2016. 2016 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes. USGS Numbered Series 2016-1035. Reston, Virginia: US Geological Survey. IP-073237.
Petersen, M. D., Mueller, C. S., Moschetti, M. P., Hoover, S. M., Shumway, A. M., McNamara, D. E., Williams, R. A., Llenos, A. L., Ellsworth, W. L., Michael, A. J., Rubinstein, J. L., McGarr, A. F., and Rukstales, K. S. 2017. one-year seismic-hazard forecast for the Central and Eastern United States from induced and natural earthquakes.Seismological Research Letters, 88(3), 772–783.CrossRefGoogle Scholar
Peterson, J. 1993. Observations and Modeling of Seismic Background Noise. Tech. rept. OFR 93-322. USGS.
Peyret, O., Drew, J., Mack, M., Brook, K., Cipolla, C., and Maxwell, S. C. 2012. Subsurface to surface microseismic monitoring for hydraulic fracturing. In: SPE Paper 159670.
Pike, K. A. 2014. Microseismic Data Processing, Modeling and Interpretation in the Presence of Coals: A Falher Member Case Study. Ph.D. thesis, University of Calgary.
Pinder, G. F., and Gray, W. G. 2008. Essentials of Multiphase Flow in Porous Media. John Wiley & Sons.CrossRefGoogle Scholar
Postma, G. W. 1955. Wave propagation in a stratified medium. Geophysics, 20(4), 780–806.CrossRefGoogle Scholar
Potocki, D. J. 2012. Understanding induced fracture complexity in different geological settings using DFIT net fracture pressure. In: SPE Canadian Unconventional Resources Conference. Calgary, Alberta: Society of Petroleum Engineers.
Power, D. V., Schuster, C. L., Hay, R., and Twombly, J. 1976. Detection of hydraulic fracture orientation and dimensions in cased wells. Journal of Petroleum Technology, 28(09), 1–116.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press.Google Scholar
Pullan, S. E. 1990. Recommended standard for seismic(/radar) data files in the personal computer environment. Geophysics, 55(9), 1260–1271.CrossRefGoogle Scholar
Putnis, A. 1992. An Introduction to Mineral Sciences. Cambridge University Press.CrossRefGoogle Scholar
Rabinowitz, N., and Steinberg, D. M. 1990. Optimal configuration of a seismographic network: a statistical approach. Bulletin of the Seismological Society of America, 80(1), 187–196.Google Scholar
Rafiq, A., Eaton, D. W., McDougall, A., and Pedersen, P. K. 2016. Reservoir characterization using microseismic facies analysis integrated with surface seismic attributes. Interpretation, 4(2), T167–T181.CrossRefGoogle Scholar
Raleigh, C. B., Healy, J. H., and Bredehoeft, J. D. 1976. An experiment in earthquake control at Rangely, Colorado. Science, 191(4233), 1230–1237.CrossRefGoogle ScholarPubMed
Ray, B., Lewis, C., Martysevich, V., Shetty, D. A., Walters, H. G., Bai, J., and Ma, J. 2017. An investigation into proppant dynamics in hydraulic fracturing. In: SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers.
Reinecker, J., Stephansson, O., and Zang, A. 2016. Guidelines for the analysis of overcoring data. Pages 43–48 of: WSM Scientific Technical Report. World Stress Map Project.
Reiter, L. 1991. Earthquake Hazard Analysis: Issues and Insights. Columbia University Press.Google Scholar
Reynolds, M. M., Thomson, S., Quirk, D. J., Dannish, M. B., Peyman, F., and Hung, A. 2012. A direct comparison of hydraulic fracture geometry and well performance between cemented liner and openhole packer completed horizontal wells in a tight gas reservoir. In: SPE Hydraulic Fracturing Technology Conference. TheWoodlands, Texas: Society of Petroleum Engineers.Google Scholar
Rich, J., and Ammerman, M. 2010. Unconventional geophysics for unconventional plays. In: SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania: Society of Petroleum Engineers.Google Scholar
Richter, C. F. 1935. An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1–32.Google Scholar
Rio, P., Mukerji, T., Mavko, G., and Marion, D. 1996. Velocity dispersion and upscaling in a laboratory-simulated VSP. Geophysics, 61(2), 584–593.CrossRefGoogle Scholar
Robein, E., Cerda, F., Drapeau, D., Maurel, L., Gaucher, E., and Auger, E. 2009. Multinetwork microseismic monitoring of fracturing jobs–Neuquen TGR application. In: 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009.
Roberts, A. 2001. Curvature attributes and their application to 3D interpreted horizons. First Break, 19(2), 85–100.CrossRefGoogle Scholar
Roberts, R. G., Christoffersson, A., and Cassidy, F. 1989. Real-time event detection, phase identification and source location estimation using single station three-component seismic data. Geophysical Journal International, 97(3), 471–480.CrossRefGoogle Scholar
Roche, V., and Van der Baan, M. 2015. The role of lithological layering and pore pressure on fluid-induced microseismicity. Journal of Geophysical Research: Solid Earth, 120(2), 923–943.Google Scholar
Rodinov, Y., Parker, R., Jones, M., Chen, Z., Maxwell, S., and Matthews, L. 2012. Optimization of stimulation strategies using real-time microseismic monitoring in Horn River Basin: GeoConvention 2012, CSEG. In: Geoconvention 2012, Expanded Abstracts.
Roland, E., and McGuire, J. J. 2009. Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690.CrossRefGoogle Scholar
Ross, D. J. K., and Bustin, R. M. 2008. Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation. AAPG Bulletin, 92(1), 87–125.CrossRefGoogle Scholar
Rost, S., and Thomas, C. 2002. Array seismology: methods and applications. Reviews of Geophysics, 40(3), 2–1–2–27.CrossRefGoogle Scholar
Roux, P.-F., Kostadinovic, J., Bardainne, T., Rebel, E., Chmiel, M., Van Parys, M., Macault, R., and Pignot, L. 2014. Increasing the accuracy of microseismic monitoring using surface patch arrays and a novel processing approach. First Break, 32(7), 95–101.Google Scholar
Rubin, A. M., and Ampuero, J.-P. 2005. Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research: Solid Earth, 110(B11).CrossRefGoogle Scholar
Rubinstein, J. L., and Mahani, A. B. 2015. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismological Research Letters.
Rudnicki, J. W. 1986. Fluid mass sources and point forces in linear elastic diffusive solids. Mechanics of Materials, 5(4), 383–393.CrossRefGoogle Scholar
Rüger, A. 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62(3), 713–722.
Rutledge, J. T., and Phillips, W. S. 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68(2), 441–452.CrossRefGoogle Scholar
Rutledge, J. T., Downie, R. C., Maxwell, S. C., and Drew, J. E. 2013. Geomechanics of hydraulic fracturing inferred from composite radiation patterns of microseismicity. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Rutqvist, J., Rinaldi, A. P., Cappa, F., and Moridis, G. J. 2013. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering, 107, 31–44.CrossRefGoogle Scholar
Saari, J. 1991. Automated phase picker and source location algorithm for local distances using a single three-component seismic station. Tectonophysics, 189(1–4), 307–315.CrossRefGoogle Scholar
Saikia, C. K. 1994. Modified frequency-wavenumber algorithm for regional seismograms using Filon's quadrature: modelling of Lg waves in eastern North America. Geophysical Journal International, 118(1), 142–158.CrossRefGoogle Scholar
Sato, H., Ono, K., Johnston, C. T., and Yamagishi, A. 2005. First-principles studies on the elastic constants of a 1:1 layered kaolinite mineral. American Mineralogist, 90(11–12), 1824–1826.CrossRefGoogle Scholar
Sattari, A. 2017. Finite-Element Modelling of Fault Slip. Ph.D. thesis, University of Calgary.Google Scholar
Sayers, C. M., and Kachanov, M. 1995. Microcrack-induced elastic wave anisotropy of brittle rocks. Journal of Geophysical Research: Solid Earth, 100(B3), 4149–4156.CrossRefGoogle Scholar
Schimmel, M., and Paulssen, H. 1997. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130(2), 497–505.CrossRefGoogle Scholar
Schisselé, E., and Meunier, J. 2009. Detection of micro-seismic events using a surface receiver network. In: EAGE Workshop on Passive Seismic.
Schlumberger. 2017. Schlumberger Oilfield Glossary. www.glossary.oilfield.slb.com Accessed: 2017/07/27.
Schmitt, D. R., and Zoback, M. D. 1993. Infiltration effects in the tensile rupture of thin walled cylinders of glass and granite: implications for the hydraulic fracturing breakdown equation. Pages 289–303 of: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 30. Elsevier.
Schmitt, D. R., Currie, C. A., and Zhang, L. 2012. Crustal stress determination from boreholes and rock cores: fundamental principles. Tectonophysics, 580, 1–26.CrossRefGoogle Scholar
Schneider, W. A. 1978. Integral formulation for migration in two and three dimensions. Geophysics, 43, 49–76.CrossRefGoogle Scholar
Schoenberg, M., and Helbig, K. 1997. Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62(6), 1954–1974.CrossRefGoogle Scholar
Schoenberg, M., and Sayers, C. M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60(1), 204–211.CrossRefGoogle Scholar
Scholz, C., Molnar, P., and Johnson, T. 1972. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism. Journal of Geophysical Research, 77(32), 6392–6406.CrossRefGoogle Scholar
Scholz, C. H. 1998. Earthquakes and friction laws. Nature, 391(6662), 37–42.CrossRefGoogle Scholar
Scholz, C. H. 2002. The Mechanics of Earthquakes and Faulting. 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Schön, J. H. 2015. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. 2nd edn. Developments in Petroleum Science, Vol. 65. Elsevier.
Schorlemmer, D., and Woessner, J. 2008. Probability of detecting an earthquake. Bulletin of the Seismological Society of America, 98(5), 2103–2117.CrossRefGoogle Scholar
Schorlemmer, D., Wiemer, S., and Wyss, M. 2005. Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539–542.CrossRefGoogle ScholarPubMed
Schubarth, S., and Milton-Tayler, D. 2004. Investigating how proppant packs change under stress. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Schultz, R., and Stern, V. 2015. The Regional Alberta Observatory for Earthquake Studies Network (RAVEN). CSEG Recorder, 40(8), 34–37.Google Scholar
Schultz, R., Stern, V., and Gu, Y. J. 2014. An investigation of seismicity clustered near the Cordel Field, west central Alberta, and its relation to a nearby disposal well. Journal of Geophysical Research: Solid Earth, 119(4), 3410–3423.Google Scholar
Schultz, R., Mei, S., Pana, D., Stern, V., Gu, Y. J., Kim, A., and Eaton, D. W. 2015a. The Cardston earthquake swarm and hydraulic fracturing of the Exshaw Formation (Alberta Bakken play). Bulletin of the Seismological Society of America, 105(6), 2871–2884.CrossRefGoogle Scholar
Schultz, R., Stern, V., Novakovic, M., Atkinson, G. M., and Gu, Y. J. 2015b. Hydraulic fracturing and the Crooked Lake sequences: insights gleaned from regional seismic networks. Geophysical Research Letters, 42(8), 2750–2758.CrossRefGoogle Scholar
Schultz, R., Corlett, H., Haug, K., Kocon, K., MacCormack, K., Stern, V., and Shipman, T. 2016. Linking fossil reefs with earthquakes: geologic insight to where induced seismicity occurs in Alberta. Geophysical Research Letters, 43, 2534–2542.CrossRefGoogle Scholar
Schultz, R., Wang, R., Gu, Y. J., Haug, K., and Atkinson, G. M. 2017. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. Journal of Geophysical Research: Solid Earth, 122(1), 492–505.Google Scholar
Seber, G. A. F. 2009. Multivariate Observations. Vol. 252. John Wiley & Sons.
Segall, P. 1989. Earthquakes triggered by fluid extraction. Geology, 17(10), 942–946.2.3.CO;2>CrossRefGoogle Scholar
Segall, P., and Lu, S. 2015. Injection-induced seismicity: poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120(7), 5082–5103.Google Scholar
Segall, P., and Rice, J. R. 1995. Dilatancy, compaction, and slip instability of a fluidinfiltrated fault. Journal of Geophysical Research: Solid Earth, 100(B11), 22155–22171.CrossRefGoogle Scholar
Settari, A. 1985. A new general model of fluid loss in hydraulic fracturing. Society of Petroleum Engineers Journal, 25(04), 491–501.CrossRefGoogle Scholar
Shapiro, S. A. 2015. Fluid-Induced Seismicity. Cambridge University Press.CrossRefGoogle Scholar
Shapiro, S. A., and Dinske, C. 2007. Violation of the Kaiser effect by hydraulic-fracturingrelated microseismicity. Journal of Geophysics and Engineering, 4(4), 378.CrossRefGoogle Scholar
Shapiro, S. A., and Dinske, C. 2009. Fluid-induced seismicity: pressure diffusion and hydraulic fracturing. Geophysical Prospecting, 57(2), 301–310.CrossRefGoogle Scholar
Shapiro, S. A., Patzig, R., Rothert, E., and Rindschwentner, J. 2003. Triggering of seismicity by pore-pressure perturbations: permeability-related signatures of the phenomenon. Pure and Applied Geophysics, 160(5–6), 1051–1066.CrossRefGoogle Scholar
Shapiro, S. A., Dinske, C., Langenbruch, C., and Wenzel, F. 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations. The Leading Edge, 29(3), 304–309.CrossRefGoogle Scholar
Shapiro, S. A., Krüger, O. S., Dinske, C., and Langenbruch, C. 2011. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes. Geophysics, 76(6), WC55–WC63.CrossRefGoogle Scholar
Shcherbakov, R., D. L. Turcotte, and J. B. Rundle 2004. A generalized Omori's law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613, doi:10.1029/2004GL019808.CrossRef
Shearer, P. M. 2009. Introduction to Seismology. 2 edn. Cambridge University Press.CrossRefGoogle Scholar
Shemeta, J., and Anderson, P. 2010. It's a matter of size: magnitude and moment estimates for microseismic data. The Leading Edge, 29(3), 296–302.CrossRefGoogle Scholar
Sheng, P. 1990. Effective-medium theory of sedimentary rocks. Physical Review B, 41(7), 4507–4512.CrossRefGoogle ScholarPubMed
Sheriff, R. E. 1991. Encyclopedic Dictionary of Exploration Geophysics. 3rd edn. Society of Exploration Geophysicists.Google Scholar
Shimazaki, K., and Nakata, T. 1980. Time-predictable recurrence model for large earthquakes. Geophysical Research Letters, 7(4), 279–282.CrossRefGoogle Scholar
Shimizu, H., Ueki, S., and Koyama, J. 1987. A tensile–shear crack model for the mechanism of volcanic earthquakes. Tectonophysics, 144(1–3), 287–300.CrossRefGoogle Scholar
Sibson, R. H. 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1–4), 283–293.CrossRefGoogle Scholar
Sibson, R. H., Moore, J., and Rankin, A. H. 1975. Seismic pumping—a hydrothermal fluid transport mechanism. Journal of the Geological Society, 131(6), 653–659.CrossRefGoogle Scholar
Silver, P. G., and Chan, W. W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10), 16429–16454.CrossRefGoogle Scholar
Silver, P. G., and Jordan, T. H. 1982. Optimal estimation of scalar seismic moment. Geophysical Journal International, 70(3), 755–787.Google Scholar
Simmons, G., and Wang, H. 1971. Single crystal elastic constants and calculated aggregate properties. 2nd edn. M. I.T. Press.Google Scholar
Simpson, D. W. 1986. Triggered earthquakes. Annual Review of Earth and Planetary Sciences, 14(1), 21–42.CrossRefGoogle Scholar
Simpson, D. W., and Richards, P. G. (eds). 1981. Fluid Flow Accompanying Faulting: Field Evidence and Models. AGU Maurice Ewing Series.
Simpson, D. W., Leith, W. S., and Scholz, C. H. 1988. Two types of reservoir-induced seismicity. Bulletin of the Seismological Society of America, 78(6), 2025–2040.Google Scholar
Sjöberg, J., Christiansson, R., and Hudson, J. A. 2003. ISRM suggested methods for rock stress estimation—Part 2: overcoring methods. International Journal of Rock Mechanics and Mining Sciences, 40(7–8), 999–1010.CrossRefGoogle Scholar
Skoumal, R. J., Brudzinski, M. R., and Currie, B. S. 2015a. Distinguishing induced seismicity from natural seismicity in Ohio: demonstrating the utility of waveform template matching. Journal of Geophysical Research: Solid Earth, 120(9), 6284–6296.Google Scholar
Skoumal, R. J., Brudzinski, M. R., and Currie, B. S. 2015b. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bulletin of the Seismological Society of America, 105(1), 189–197.CrossRefGoogle Scholar
Skoumal, R. J., Brudzinski, M. R., and Currie, B. S. 2016. An efficient repeating signal detector to investigate earthquake swarms. Journal of Geophysical Research: Solid Earth, 121(8), 5880–5897.Google Scholar
Smith, M. B., and Montgomery, C. T. 2015. Hydraulic Fracturing. CRC Press.Google Scholar
Smith, M. B., and Shlyapobersky, J. W. 2000. Basics of hydraulic fracturing. Pages 5–1 –5–28 of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation, vol. 18. Chichester: John Wiley & Sons Ltd.Google Scholar
Smith, M. L., and Dahlen, F. A. 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321–3333.CrossRefGoogle Scholar
Smith, R. J., Alinsangan, N. S., and Talebi, S. 2002. Microseismic response of well casing failures at a thermal heavy oil operation. In: SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers.
Smith, T. M., Sondergeld, C. H., and Rai, C. S. 2003. Gassmann fluid substitutions: a tutorial. Geophysics, 68(2), 430–440.CrossRefGoogle Scholar
Sneddon, I. N., and Elliot, H. A. 1946. The opening of a Griffith crack under internal pressure. Quarterly of Applied Mathematics, 4(3), 262–267.CrossRefGoogle Scholar
Snelling, P., and Taylor, N. 2013. Optimization of a shallow microseismic array design for hydraulic fracture monitoring a horn river basin case study. CSEG Recorder, 38(3), 22–25.Google Scholar
Snelling, P. E., de Groot, M., and Hwang, K. 2013. Characterizing hydraulic fracture behaviour in the Horn River Basin with microseismic data. Pages 4502–4507 of: SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists.
Soltanzadeh, M., Fox, A., Rahim, N., Davies, G., and Hume, D. 2015. Application of mechanical and mineralogical rock properties to identify fracture fabrics in the Devonian Duvernay formation in Alberta. Pages 1668–1681 of: Unconventional Resources Technology Conference, San Antonio, Texas, 20–22 July 2015. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
Song, F., Warpinski, N. R., Toksöz, M. N., and Kuleli, H. S. 2014. Full-waveform based microseismic event detection and signal enhancement: an application of the subspace approach. Geophysical Prospecting, 62(6), 1406–1431.CrossRefGoogle Scholar
Speight, J. G. 2016. Handbook of Hydraulic Fracturing. John Wiley & Sons.CrossRefGoogle Scholar
Spičák, A. 2000. Earthquake swarms and accompanying phenomena in intraplate regions: a review. Studia Geophysica et Geodaetica, 44(2), 89–106.Google Scholar
St-Onge, A. 2011. Akaike information criterion applied to detecting first arrival times on microseismic data. Pages 1658–1662 of: SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists.
St-Onge, A., and Eaton, D. W. 2011. Noise examples from two microseismic datasets. CSEG Recorder, 36(10), 46–49.Google Scholar
Stanek, F., and Eisner, L. 2013. New model explaining inverted source mechanisms of microseismic events induced by hydraulic fracturing. Pages 2201–2205 of: SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists.
Steffen, R., Eaton, D. W., and Wu, P. 2012. Moment tensors, state of stress and their relation to post-glacial rebound in northeastern Canada. Geophysical Journal International, 189(3), 1741–1752.CrossRefGoogle Scholar
Steffen, R., Wu, P., Steffen, H., and Eaton, D. W. 2014. On the implementation of faults in finite-element glacial isostatic adjustment models. Computers & Geosciences, 62, 150–159.CrossRefGoogle Scholar
Stein, S., andWysession, M. 2009. An Introduction to Seismology, Earthquakes, and Earth Structure. John Wiley & Sons.Google Scholar
Stesky, R. M., Brace, W. F., Riley, D. K., and Robin, P.-Y. F. 1974. Friction in faulted rock at high temperature and pressure. Tectonophysics, 23(1–2), 177–203.CrossRefGoogle Scholar
Stork, A. L., Verdon, J. P., and Kendall, J.-M. 2014. The robustness of seismic moment and magnitudes estimated using spectral analysis. Geophysical Prospecting, 62(4), 862–878.CrossRefGoogle Scholar
Suckale, J. 2010. Moderate-to-large seismicity induced by hydrocarbon production. The Leading Edge, 29(3), 310–319.CrossRefGoogle Scholar
Surjaatmadja, J. B., Bezanson, J., Lindsay, S. D., Ventosilla, P. A., and Rispler, K. A. 2008. New hydra-jet tool demonstrates improved life for perforating and fracturing applications. In: SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. Society of Petroleum Engineers.
Talwani, P. 1997. On the nature of reservoir-induced seismicity. Pure and Applied Geophysics, 150(3–4), 473–492.CrossRefGoogle Scholar
Tan, Y., and Engelder, T. 2016. Further testing of the bedding-plane-slip model for hydraulic-fracture opening using moment-tensor inversions. Geophysics, 81(5), KS159–KS168.CrossRefGoogle Scholar
Taner, M. T. 2001. Seismic attributes. CSEG Recorder, 26(7), 48–56.Google Scholar
Tapley, W. C., and Tull, J. E. 1992. SAC-Seismic Analysis Code: Users Manual. Tech. rept. Lawrence Livermore National Laboratory.
Tary, J. B., Baan, M., and Eaton, D. W. 2014a. Interpretation of resonance frequencies recorded during hydraulic fracturing treatments. Journal of Geophysical Research: Solid Earth, 119(2), 1295–1315.Google Scholar
Tary, J. B., Herrera, R. H., Han, J., and Van der Baan, M. 2014b. Spectral estimation—What is new? What is next? Reviews of Geophysics, 52(4), 723–749.CrossRefGoogle Scholar
Taylor, S. R., Arrowsmith, S. J., and Anderson, D. N. 2010. Detection of short time transients from spectrograms using scan statistics. Bulletin of the Seismological Society of America, 100(5A), 1940–1951.CrossRefGoogle Scholar
Telesca, L. 2010. Analysis of the cross-correlation between seismicity and water level in the Koyna area of India. Bulletin of the Seismological Society of America, 100(5A), 2317–2321.CrossRefGoogle Scholar
Tester, J. W., Anderson, B. J., Batchelor, A. S., Blackwell, D. D., DiPippo, R., Drake, E. M., Garnish, J., Livesay, B., Moore, M. C., Nichols, K., Petty, S., Toksoz, M. N., Veath, R. W., Roy, B., Augustine, C., Murphy, E., Negraru, P., and Richards, M. 2007. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1853), 1057–1094.CrossRefGoogle ScholarPubMed
Thiercelin, M. C., and Roegiers, J.-C. 2000. Formation characterization: rock mechanics. Pages 3–1 –3–35 of: Economides, M. J., and Nolte, K. G. (eds.), Reservoir Stimulation, 3rd edn. John Wiley & Sons.Google Scholar
Thomsen, L. 1986. Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.CrossRefGoogle Scholar
Thornton, M. 2012. Resolution and location uncertainties in surface microseismic monitoring. In: Geoconvention 2012.
Thornton, M., and Mueller, M. 2013. Uncertainty in surface microseismic monitoring. In: Geoconvention 2013.
Tian, X., Zhang, W., and Zhang, J. 2017. Cross double-difference inversion for simultaneous velocity model update and microseismic event location. Geophysical Prospecting, doi:10.1111/1365-2478.12556.CrossRef
Townend, J., and Zoback, M. D. 2000. How faulting keeps the crust strong. Geology, 28(5), 399–402.2.0.CO;2>CrossRefGoogle Scholar
Trifunac, M. D. 1974. A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971. Bulletin of the Seismological Society of America, 64(1), 149–172.Google Scholar
Trojanowski, J., and Eisner, L. 2017. Comparison of migration-based location and detection methods for microseismic events. Geophysical Prospecting, 65(1), 47–63.CrossRefGoogle Scholar
Trutnevyte, E., and Wiemer, S. 2017. Tailor-made risk governance for induced seismicity of geothermal energy projects: an application to Switzerland. Geothermics, 65, 295–312.CrossRefGoogle Scholar
Tsvankin, I. 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 62(4), 1292–1309.CrossRefGoogle Scholar
Tsvankin, I., and Thomsen, L. 1994. Nonhyperbolic reflection moveout in anisotropic media. Geophysics, 59(8), 1290–1304.CrossRefGoogle Scholar
Unwin, A. T., and Hammond, P. S. 1995. Computer simulations of proppant transport in a hydraulic fracture. In: SPE Western Regional Meeting. Society of Petroleum Engineers.
Urbancic, T., and Wuestefeld, A. 2013. Black box recording of passive seismicity: pitfalls of not understanding your acquisition instrumentation and its limitations. In: Geoconvention 2013.
USGS. 2017. Earthquake Glossary –USGS Earthquake Hazards Program. https://earthquake.usgs.gov/learn/glossaryAccessed:2017/07/27.
Utsu, T. 1961. A statistical study on the occurrence of aftershocks. Geophysical Magazine, 30(4), 521–605.Google Scholar
Valcke, S. L. A., Casey, M., Lloyd, G. E., Kendall, J.-M., and Fisher, Q. J. 2006. Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophysical Journal International, 166(2), 652–666.CrossRefGoogle Scholar
Van der Baan, M., Eaton, D. W., and Dusseault, M. 2013. Microseismic monitoring developments in hydraulic fracture stimulation. Pages 439–466 of: ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics.
Van der Baan, M., Eaton, D. W., and Preisig, G. 2016. Stick-split mechanism for anthropogenic fluid-induced tensile rock failure. Geology, 44(7), 503–506.CrossRefGoogle Scholar
Van der Elst, N. J., Savage, H. M., Keranen, K. M., and Abers, G. A. 2013. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States. Science, 341(6142), 164–167.CrossRefGoogle ScholarPubMed
Van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W., and Hosseini, S. M. 2016. Induced earthquake magnitudes are as large as (statistically) expected. Journal of Geophysical Research: Solid Earth, 121(6), 4575–4590.Google Scholar
Van Domelen, M. S. 2017. A practical guide to modern diversion technology. In: SPE Oklahoma City Oil and Gas Symposium. Society of Petroleum Engineers.
Van Thienen-Visser, K., and Breunese, J. N. 2015. Induced seismicity of the Groningen gas field: history and recent developments. The Leading Edge, 34(6), 664–671.CrossRefGoogle Scholar
Van Trees, H. L. 1968. Detection, Estimation, and Modulation Theory. John Wiley & Sons.Google Scholar
Vasudevan, K., Eaton, D. W., and Davidsen, J. 2010. Intraplate seismicity in Canada: a graph theoretic approach to data analysis and interpretation. Nonlinear Processes in Geophysics, 17(5), 513.CrossRefGoogle Scholar
Vavryčuk, V. 2005. Focal mechanisms in anisotropic media. Geophysical Journal International, 161(2), 334–346.CrossRefGoogle Scholar
Vavryčuk, V. 2006. Calculation of the slowness vector from the ray vector in anisotropic media. Pages 883–896 of: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 462. The Royal Society.
Vavryčuk, V. 2007. On the retrieval of moment tensors from borehole data. Geophysical Prospecting, 55(3), 381–391.CrossRefGoogle Scholar
Vavryčuk, V. 2011. Tensile earthquakes: Theory, modeling, and inversion, J. Geophys. Res., 116, B12320, doi:10.1029/2011JB008770.CrossRef
Vavryčuk, V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77.CrossRefGoogle Scholar
Vavryčuk, V. 2015. Moment tensor decompositions revisited. Journal of Seismology, 19(1), 231–252.CrossRefGoogle Scholar
Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., and Kondash, A. 2014. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology, 48(15), 8334–8348.CrossRefGoogle ScholarPubMed
Verdon, J. P., and Wüstefeld, A. 2013. Measurement of the normal/tangential fracture compliance ratio (ZN/ZT) during hydraulic fracture stimulation using S-wave splitting data. Geophysical Prospecting, 61(s1), 461–475.CrossRefGoogle Scholar
Virieux, J. 1986. P-SV wave propagation in heterogeneous media: velocity-stress finitedifference method. Geophysics, 51(4), 889–901.CrossRefGoogle Scholar
Virues, C., Hendrick, J., and Kashikar, S. 2016. Development of limited discrete fracture network using surface microseismic event detection testing in Canadian Horn River Basin. Pages 1346–1361 of: Unconventional Resources Technology Conference, San Antonio, Texas, 1–3 August 2016. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
Vlček, J., Fischer, T., and Vilhelm, J. 2016. Back-projection stacking of P- and S-waves to determine location and focal mechanism of microseismic events recorded by a surface array. Geophysical Prospecting, 64(6), 1428–1440.CrossRefGoogle Scholar
Waldhauser, F. 2001. HypoDD-A Program to Compute Double-Difference Hypocenter Locations. Tech. rept. Open File Report 01-113. USGS.
Waldhauser, F., and Ellsworth, W. L. 2000. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368.CrossRefGoogle Scholar
Walker, R. N. 1997. Cotton Valley hydraulic fracture imaging project. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Wallace, R. E. 1951. Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118–130.CrossRefGoogle Scholar
Walsh, F. R., and Zoback, M. D. 2015. Oklahoma's recent earthquakes and saltwater disposal. Science Advances, 1(5), e1500195.CrossRefGoogle ScholarPubMed
Walsh, F. R., and Zoback, M. D. 2016. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: Application to north-central Oklahoma, USA. Geology, 44(12), 991–994.CrossRefGoogle Scholar
Walter, W. R., and Brune, J. N. 1993. Spectra of seismic radiation from a tensile crack. Journal of Geophysical Research: Solid Earth, 98(B3), 4449–4459.CrossRefGoogle Scholar
Walters, R. J., Zoback, M. D., Baker, J. W., and Beroza, G. C. 2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by fluid disposal and hydraulic fracturing. Seismological Research Letters, 86(4), 1110–1118.CrossRefGoogle Scholar
Wang, H. F. 2017. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press.Google Scholar
Wang, M., and Pan, N. 2008. Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering: R: Reports, 63(1), 1–30.CrossRefGoogle Scholar
Wang, R., Gu, Y. J., Schultz, R., Kim, A., and Atkinson, G. M. 2016. Source analysis of a potential hydraulic-fracturing-induced earthquake near Fox Creek, Alberta. Geophysical Research Letters, 43, 564–573.Google Scholar
Wapenaar, K., and Fokkema, J. 2006. Green's function representations for seismic interferometry. Geophysics, 71(4), SI33–SI46.CrossRefGoogle Scholar
Warner, H. R. 2015. The Reservoir Engineering Aspects of Waterflooding. Society of Petroleum Engineers.
Warpinski, N. 2009. Microseismic monitoring: inside and out. Journal of Petroleum Technology, 61(11), 80–85.CrossRefGoogle Scholar
Warpinski, N., Kramm, R. C., Heinze, J. R., and Waltman, C. K. 2005a. Comparison of single- and dual-array microseismic mapping techniques in the Barnett Shale. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Warpinski, N. R., Sullivan, R. B., Uhl, J., Waltman, C., and Machovoie, S. 2005b. Improved microseismic fracture mapping using perforation timing measurements for velocity calibration. SPE Journal, 10(01), 14–23.CrossRefGoogle Scholar
Warpinski, N. R. 1989. Elastic and viscoelastic calculations of stresses in sedimentary basins. SPE Formation Evaluation, 4(04), 522–530.CrossRefGoogle Scholar
Warpinski, N. R., and Wolhart, S. 2016. A validation assessment of microseismic monitoring. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
Warpinski, N. R., Branagan, P. T., Peterson, R. E., and Wolhart, S. L. 1998. An interpretation of M-site hydraulic fracture diagnostic results. In: SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium. Society of Petroleum Engineers.
Warpinski, N. R., Mayerhofer, M. J., Vincent, M. C., Cipolla, C. L., and Lolon, E. P. 2009. Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity. Journal of Canadian Petroleum Technology, 48(10), 39–51.CrossRefGoogle Scholar
Warpinski, N. R., Du, J., and Zimmer, U. 2012. Measurements of hydraulic-fractureinduced seismicity in gas shales. SPE Production & Operations, 27(SPE-151597-PA), 240–252.CrossRefGoogle Scholar
Warpinski, N. R., Mayerhofer, M. J., Davis, E. J., and Holley, E. H. 2014. Integrating fracture diagnostics for improved microseismic interpretation and stimulation modeling. Pages 1518–1536 of: Unconventional Resources Technology Conference (URTEC).
Watt, J. P., Davies, G. F., and O'Connell, R. J. 1976. The elastic properties of composite materials. Reviews of Geophysics, 14(4), 541–563.CrossRefGoogle Scholar
Webb, S. C. 2002. Seismic noise on land and on the sea floor. Chap. 19 of: International Handbook of Earthquake & Engineering Seismology, Part A, vol. 81A. International Association of Seismology and Physics of the Earth's Interior.
Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A., and Rubinstein, J. L. 2015. Highrate injection is associated with the increase in US mid-continent seismicity. Science, 348(6241), 1336–1340.CrossRefGoogle Scholar
Welzl, E. 1991. Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer Science, 359–370.Google Scholar
Weng, X., Kresse, O., Cohen, C.-E., Wu, R., and Gu, H. 2011. Modeling of hydraulicfracture- network propagation in a naturally fractured formation. SPE Production & Operations, 26(4), 368–380.CrossRefGoogle Scholar
Westfall, P. H. 2014. Kurtosis as peakedness, 1905–2014. RIP. The American Statistician, 68(3), 191–195.Google ScholarPubMed
White, A. J., Traugott, M. O., and Swarbrick, R. E. 2002. The use of leak-off tests as means of predicting minimum in-situ stress. Petroleum Geoscience, 8(2), 189–193.CrossRefGoogle Scholar
Wielandt, E. 2002. Seismometry. Chap. 18 of: International Handbook of Earthquake & Engineering Seismology, Part A, vol. 81A. International Association of Seismology and Physics of the Earth's Interior.
Wiemer, S., and Wyss, M. 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869.CrossRefGoogle Scholar
Winterstein, D. F. 1990. Velocity anisotropy terminology for geophysicists. Geophysics, 55(8), 1070–1088.CrossRefGoogle Scholar
Woessner, J., and Wiemer, S. 2005. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698.CrossRefGoogle Scholar
Wong, I., Nemser, E., Bott, J., and Dober, M. 2013. White Paper: Induced Seismicity and Traffic Light Systems as Related to Hydraulic Fracturing in Ohio. Tech. rept. Seismic Hazards Group.
Wyss, M., and Molnar, P. 1972. Efficiency, stress drop, apparent stress, effective stress, and frictional stress of Denver, Colorado, earthquakes. Journal of Geophysical Research, 77(8), 1433–1438.CrossRefGoogle Scholar
Xia, J., Miller, R. D., and Park, C. B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691–700.CrossRefGoogle Scholar
Xue, J., Gu, H., and Cai, C. 2017. Model-based amplitude versus offset and azimuth inversion for estimating fracture parameters and fluid content. Geophysics, 82(2), M1–M17.CrossRefGoogle Scholar
Yenier, E. 2017. A local magnitude relation for earthquakes in the western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 1421–1431.
Yilmaz, Ö. 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists.
Yoon, C. E., O'Reilly, O., Bergen, K. J., and Beroza, G. C. 2015. Earthquake detection through computationally efficient similarity search. Science Advances, 1(11), e1501057.CrossRefGoogle ScholarPubMed
Yoon, J. S., Zang, A., and Stephansson, O. 2014. Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydromechanical coupled discrete particles joints model. Geothermics, 52, 165–184.CrossRefGoogle Scholar
Young, G. B., and Braile, L. W. 1976. A computer program for the application of Zoeppritz's amplitude equations and Knott's energy equations. Bulletin of the Seismological Society of America, 66(6), 1881–1885.Google Scholar
Zecevic, M., Daniel, G., and Jurick, D. 2016. On the nature of long-period long-duration seismic events detected during hydraulic fracturing. Geophysics, 81(3), KS113–KS121.CrossRefGoogle Scholar
Zhang, G., Qu, C., Shan, X., Song, X., Zhang, G., Wang, C., Hu, J.-C., and Wang, R. 2011a. Slip distribution of the 2008 Wenchuan Ms 7.9 earthquake by joint inversion from GPS and InSAR measurements: a resolution test study. Geophysical Journal International, 186(1), 207–220.Google Scholar
Zhang, Y., Eisner, L., Barker, W., Mueller, M., and Smith, K. 2011b. Consistent imaging of hydraulic fracture treatments from permanent arrays using a calibrated velocity model. In: 3rd EAGE Passive Seismic Workshop.
Zhang, H., Thurber, C., and Rowe, C. 2003. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bulletin of the Seismological Society of America, 93(5), 1904–1912.CrossRefGoogle Scholar
Zhang, H., Sarkar, S., Toksöz, M. N., Kuleli, H. S., and Al-Kindy, F. 2009. Passive seismic tomography using induced seismicity at a petroleum field in Oman. Geophysics, 74(6), WCB57–WCB69.CrossRefGoogle Scholar
Zhang, H., Eaton, D. W., Li, G., Liu, Y., and Harrington, R. M. 2016. Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra. Journal of Geophysical Research: Solid Earth, 121(2), 972–993.Google Scholar
Zhang, M., and Wen, L. 2015. An effective method for small event detection: match and locate (M&L). Geophysical Journal International, 200(3), 1523–1537.CrossRefGoogle Scholar
Zhebel, O., and Eisner, L. 2014. Simultaneous microseismic event localization and source mechanism determination. Geophysics, 80(1), KS1–KS9.Google Scholar
Zimmer, U. 2011. Microseismic design studies. Geophysics, 76(6), WC17–WC25.CrossRefGoogle Scholar
Zoback, M. D. 2010. Reservoir Geomechanics. Cambridge University Press.Google Scholar
Zoback, M. D., Mastin, L., and Barton, C. 1986. In-situ stress measurements in deep boreholes using hydraulic fracturing, wellbore breakouts, and stonely wave polarization. In: ISRM International Symposium. Stockholm: International Society for Rock Mechanics.Google Scholar
Zoback, M. D., Apel, R., Baumgärtner, J., Brudy, M., Emmermann, R., Engeser, B., Fuchs, K., Kessels, W., Rischmüller, H., Rummel, F., and Vernik, L. 1993. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole. Nature, 365, 633–635.CrossRefGoogle Scholar
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., and Wiprut, D. J. 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7–8), 1049–1076.CrossRefGoogle Scholar
Zoback, M. L. 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8), 11703–11728.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David W. Eaton, University of Calgary
  • Book: Passive Seismic Monitoring of Induced Seismicity
  • Online publication: 07 June 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535547.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David W. Eaton, University of Calgary
  • Book: Passive Seismic Monitoring of Induced Seismicity
  • Online publication: 07 June 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535547.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David W. Eaton, University of Calgary
  • Book: Passive Seismic Monitoring of Induced Seismicity
  • Online publication: 07 June 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535547.014
Available formats
×