Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T00:06:10.999Z Has data issue: false hasContentIssue false

28 - Particle dark matter and Big Bang nucleosynthesis

Published online by Cambridge University Press:  04 August 2010

Gianfranco Bertone
Affiliation:
Institut d'Astrophysique de Paris
Get access

Summary

Introduction

In the late 1940s and throughout the 1950s a number of visionary scientists including Alpher, Fermi, Follin, Gamow, Hayashi, Herman and Turkevich attempted to explain nuclear abundance patterns observed in the nearby Universe, such as the peculiar high helium mass fraction YP ≈ 0.25. This initially speculative work on an era of nucleosynthesis (element formation) in an expanding Universe at very high temperature T ∼ 109 K developed slowly but steadily over the coming decades into what is now known as the Standard Model of Big Bang nucleosynthesis (BBN). The idea that the Universe may have undergone a very hot and dense early phase was triggered by the observations of Hubble, in the 1920s, of the recession velocity of galaxies being proportional to their inferred distance from the Milky Way, which were most elegantly explained by a Universe in expansion. The ‘expanding hot Big Bang’ idea received further support from the observation by Penzias and Wilson in 1965 of the cosmic microwave background radiation (CMBR), believed to be the left-over radiation of the early Universe. Detailed observational and theoretical studies of BBN as well as the CMBR and the Hubble flow have developed into the main pillars on which present-day cosmology rests.

BBN takes place between eras with (CMBR) temperatures T ≠ 3 MeV and T ≠ 10 keV, in the cosmic time window t ≠ 0.1–104s, and may be characterized as a freeze-out from nuclear statistical equilibrium of a cosmic plasma at very low (∼10−9) baryon-to-photon number ratio (cf. Section 28.2), conditions which are not encountered in stars.

Type
Chapter
Information
Particle Dark Matter
Observations, Models and Searches
, pp. 565 - 585
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×