Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T06:52:27.058Z Has data issue: false hasContentIssue false

13 - Paradoxical functional facilitation with noninvasive brain stimulation

Published online by Cambridge University Press:  05 December 2011

Umer Najib
Affiliation:
Harvard Medical School
Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Narinder Kapur
Affiliation:
University College London
Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Vilayanur Ramachandran
Affiliation:
University of California, San Diego
Jonathan Cole
Affiliation:
University of Bournemouth
Sergio Della Sala
Affiliation:
University of Edinburgh
Tom Manly
Affiliation:
MRC Cognition and Brain Sciences Unit
Andrew Mayes
Affiliation:
University of Manchester
Oliver Sacks
Affiliation:
Columbia University Medical Center
Get access

Summary

Summary

Noninvasive brain stimulation with transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) is valuable in research and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, neurology and neurorehabilitation. TMS and tDCS allow diagnostic and interventional neurophysiology applications, targeted neuropharmacology delivery and systematic exploration of local cortical plasticity and brain network dynamics. Repetitive TMS or tDCS can modulate cortical excitability of the directly targeted brain region beyond the duration of the brain stimulation train by the induction of phenomena similar to long-term potentiation (LTP) or long-term depression (LTD), which may increase or decrease cortical excitability respectively. The effects of TMS or tDCS do not remain limited to the targeted brain region, and thus disruption of brain activity by TMS or tDCS can result in behavioural facilitation via distant cortical or subcortical structures. In addition, state-dependent effects of noninvasive brain stimulation condition the impact of TMS and tDCS and may result in paradoxical behavioural effects of the stimulation. Greater understanding of the neurobiological mechanisms involved in such intances may allow us to systematically use TMS or tDCS to leverage paradoxical functional facilitation for therapeutic applications.

Introduction

In the past decades, neuroimaging techniques such as computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), magnetoencephalography (MEG) and electro-encephalography (EEG) have shaped the ways in which we model behaviour. Anatomical neuroimaging techniques produce ever more detailed descriptions of the extent of lesions produced by brain injury.

Type
Chapter
Information
The Paradoxical Brain , pp. 234 - 260
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldini, G. (1804). Essai théorique et expérimental sur le galvanisme. Paris: Fournier Fils.Google Scholar
Ardolino, G., Bossi, B., Barbieri, S., & Priori, A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. Journal of Physiology, 568: 653–63.CrossRefGoogle ScholarPubMed
Barker, A. T. (1976). Determination of the Distribution of Conduction Velocity in Human Nerve Trunks. Sheffield: University of Sheffield.Google Scholar
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive stimulation of human motor cortex. Lancet, 1: 1106–07.CrossRefGoogle ScholarPubMed
Beard, G. M., & Rockwell, A. D. (1871). A Practical Treatise on the Medical and Surgical Use of Electricity, Including Localized and General Electrization. New York, NY: William Wood.Google Scholar
Belin, P., Eeckhout, P., Zilbovicious, M., et al. (1996). Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology, 47: 1504–11.CrossRefGoogle ScholarPubMed
Brickford, R. G., & Fremming, B. D. (1965). Neural stimulation by pulsed magnetic fields in animals and man. In: Iwai, Y. (Ed.). Digital 6th International Conference on Medical and Biological Engineering. Tokyo: Japan Society of Medical Electronics and Biological Engineering, p. 112.Google Scholar
Brighina, F., Bisiach, E., Oliveri, M., et al. (2003). 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans. Neuroscience Letters, 16: 131–3.CrossRefGoogle Scholar
Brighina, F., Piazza, A., Daniele, O., & Fierro, B. (2002). Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Experimental Brain Research, 145: 177–81.CrossRefGoogle ScholarPubMed
Brown, R. M., & Robertson, E. M. (2007). Off-line processing: reciprocal interactions between declarative and procedural memories. Journal of Neuroscience, 27: 10,468–75.CrossRefGoogle ScholarPubMed
Cattaneo, Z., & Silvanto, J. (2008a). Investigating visual motion perception using the transcranial magnetic stimulation-adaptation paradigm. Neuroreport, 19: 1423–7.CrossRefGoogle ScholarPubMed
Cattaneo, Z., & Silvanto, J. (2008b). Time course of the state-dependent effect of transcranial magnetic stimulation in the TMS-adaptation paradigm. Neuroscience Letters, 443: 82–5.CrossRefGoogle ScholarPubMed
Cattaneo, Z., Rota, F., Vecchi, T., & Silvanto, J. (2008). Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. European Journal of Neuroscience, 28: 1924–9.CrossRefGoogle ScholarPubMed
Chen, R., Classen, J., Gerloff, C., et al. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–403.CrossRefGoogle ScholarPubMed
Clark, D., & Wagner, A. D. (2003). Assembling and encoding word representations: fMRI subsequent memory effects implicate a role for phonological control. Neuropsychologia, 41: 304–17.CrossRefGoogle ScholarPubMed
Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of transcortical D-C currents on cortical neuronal activity. Experimental Neurology, 5: 436–52.CrossRefGoogle Scholar
d'Arsonval, A. (1896). Dispositifs pour la mesure des courants alternatifs de toutes frequences. CR Soc Bid (Paris), 21: 450–1.Google Scholar
Duchenne, G. B. A. (1855). De l'Électrisation Localisée et de son Application à la Physiologie, à la Pathologie et à la Thérapeutique. Paris: J.B. Baillière.Google Scholar
Fierro, B., Brighina, F., Vitello, G., et al. (2005). Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation. Journal of Physiology, 565: 659–65.CrossRefGoogle ScholarPubMed
Fregni, F., Boggio, P. S., Mansur, C. G., et al. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16: 1551–5.CrossRefGoogle ScholarPubMed
Galea, J. M., Albert, N. B., Ditye, T., & Miall, R. C. (2010). Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills. Journal of Cognitive Neuroscience, 22: 1158–64.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., Kötter, R., & Young, M. P. (1999). Inter-hemispheric competition of sub-cortical structures is a crucial mechanism in paradoxical lesion effects and spatial neglect. Progress in Brain Research, 121: 121–41.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., Theoret, H., & Pascual-Leone, A. (2001). Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nature Neuroscience, 4: 953–7.CrossRefGoogle ScholarPubMed
Kahn, I., Pascual-Leone, A., Theoret, H., Fregni, F., Clark, D., & Wagner, A. D. (2005). Transient disruption of ventrolateral prefrontal cortex during verbal encoding affects subsequent memory performance. Journal of Neurophysiology, 94: 688–98.CrossRefGoogle ScholarPubMed
Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. In: Weinstein, E. A. & Friedland, R. P. (Eds.). Hemi-inattention and Hemisphere Specialization. Advances in Neurology, Volume 18. New York, NY: Raven Press, 41–9.Google Scholar
Knecht, S., Floel, A., Drager, B., et al. (2002). Degree of language lateralization determines susceptibility to unilateral brain lesions. Nature Neuroscience, 5: 695–9.CrossRefGoogle ScholarPubMed
Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. Lancet Neurology, 2: 145–56.CrossRefGoogle ScholarPubMed
Kobayashi, M., Hutchinson, S., Schlaug, G., & Pascual-Leone, A. (2003). Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. Neuroimage, 20: 2259–70.CrossRefGoogle ScholarPubMed
Kobayashi, M., Théoret, H., & Pascual-Leone, A. (2009). Suppression of ipsilateral motor cortex facilitates motor skill learning. European Journal of Neuroscience, 29: 833–6.CrossRefGoogle ScholarPubMed
Koch, G., Oliveri, M., Cheeran, B., et al. (2008). Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain, 131: 3147–55.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Pascual-Leone, A., Felician, O., et al. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284: 167–70.CrossRefGoogle ScholarPubMed
Lee, L., Siebner, H. R., Rowe, J. B., et al. (2003). Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. Journal of Neuroscience, 23: 5308–18.CrossRefGoogle ScholarPubMed
Liepert, J., Storch, P., Fritsch, A., & Weiller, C. (2000). Motor cortex disinhibition in acute stroke. Clinical Neurophysiology, 111: 671–6.CrossRefGoogle ScholarPubMed
Lewald, J., Foltys, H., & Töpper, R. (2002). Role of the posterior parietal cortex in spatial hearing. Journal of Neuroscience, 22: RC207.CrossRefGoogle ScholarPubMed
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 111: 800–05.CrossRefGoogle ScholarPubMed
Mansur, C. G., Fregni, F., Boggio, P. S., et al. (2005). A sham-stimulation controlled trial of rTMS of the unaffected hemisphere on hand motor function after stroke. Neurology, 64: 1802–04.CrossRefGoogle Scholar
Martin, P. I., Naeser, M. A., Theoret, H., et al. (2004). Transcranial magnetic stimulation as a complementary treatment for aphasia. Seminars in Speech and Language, 25: 181–91.CrossRefGoogle ScholarPubMed
Monti, A., Cogiamanian, F., Marceglia, S., et al. (2008). Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology, Neurosurgery and Psychiatry, 79: 451–3.CrossRefGoogle ScholarPubMed
Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J., & Pascual-Leone, A. (2002). Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cerebral Cortex, 12: 369–75.CrossRefGoogle ScholarPubMed
Mottaghy, F. M., Krause, B. J., Kemna, L. J., et al.(2000). Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neuroscience Letters, 280: 167–70.CrossRefGoogle ScholarPubMed
Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology, 55: 400–09.CrossRefGoogle ScholarPubMed
Naeser, M. A., Martin, P. I., Baker, E. H., et al. (2004). Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method, Neuroimage, 22: 29–41.CrossRefGoogle ScholarPubMed
Naeser, M. A., Martin, P. I., Nicholas, M., et al. (2005a). Improved naming after TMS treatments in a chronic, global Aphasia patient – case report. Neurocase, 11: 182–93.CrossRefGoogle Scholar
Naeser, M. A., Martin, P. I., Nicholas, M., et al. (2005b). Improved picture naming in chronic Aphasia after TMS to part of right Broca's area, an open-protocol study. Brain and Language, 93: 95–105.CrossRefGoogle ScholarPubMed
Nagai, C., Inui, T., & Iwata, M. (2010). Role of Broca's subregions in syntactic processing: a comparative study of Japanese patients with lesions in the pars triangularis and opercularis. European Neurology, 63: 79–86.CrossRefGoogle ScholarPubMed
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527: 633–9.CrossRefGoogle ScholarPubMed
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57: 1899–901.CrossRefGoogle ScholarPubMed
Nitsche, M. A., Nitsche, M. S., Klein, C. C., et al. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114: 600–04.CrossRefGoogle ScholarPubMed
Oliveri, M., Bisiach, E., Brighina, F., et al. (2001). rTMS of the unaffected hemisphere transiently reduces contralesional visuospatial hemineglect. Neurology, 57: 1338–40.CrossRefGoogle ScholarPubMed
Oliveri, M., Rossini, P. M., Traversa, R., et al. (1999). Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. Brain, 122: 1731–9.CrossRefGoogle ScholarPubMed
Otten, L. J., Henson, R. N., & Rugg, M. D. (2002). State-related and item-related neural correlates of successful memory encoding. Nature Neuroscience, 5: 1339–44.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Bartres-Faz, D., & Keenan, J. P. (1999). Transcranial magnetic stimulation: studying the brain–behaviour relationship by induction of ‘virtual lesions’. Philosophical Transactions of the Royal Society London, Part B – Biological Sciences, 354: 1229–38.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Tormos, J. M., Keenan, J., Tarazona, F., Canete, C., & Catala, M. D. (1998). Study and modulation of human cortical excitability with transcranial magnetic stimulation. Journal of Clinical Neurophysiology, 15: 333–43.CrossRefGoogle ScholarPubMed
Perani, D., Cappa, S. F., Tettamanti, M., et al. (2003). An fMRI study of word retrieval in aphasia. Brain and Language, 85: 357–68.CrossRefGoogle ScholarPubMed
Priori, A., Berardelli, A., Rona, S., Accornero, N., & Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport, 9: 2257–60.CrossRefGoogle ScholarPubMed
Purpura, D. P., & McMurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28: 166–85.CrossRefGoogle ScholarPubMed
Robertson, E. M., Tormos, J. M., Maeda, F., & Pascual-Leone, A. (2001). The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cerebral Cortex, 11: 628–35.CrossRefGoogle Scholar
Romei, V., Murray, M. M., Merabet, L. B., & Thut, G. (2007). Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. Journal of Neuroscience, 27: 11,465–72.CrossRefGoogle ScholarPubMed
Rosen, H. J., Petersen, S. E., Linenweber, M. R., et al. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55: 1883–94.CrossRefGoogle ScholarPubMed
Rushmore, R. J., Valero-Cabre, A., Lomber, S. G., Hilgetag, C. C., & Payne, B. R. (2006). Functional circuitry underlying visual neglect. Brain, 129: 1803–21.CrossRefGoogle ScholarPubMed
Sack, A. T., Sperling, J. M., Prvulovic, D., et al. (2002). Tracking the mind's image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron, 35: 195–204.CrossRefGoogle ScholarPubMed
Satow, T., Mima, T., Yamamoto, J., et al. (2003). Short-lasting impairment of tactile perception by 0.9 Hz-rTMS of the sensorimotor cortex. Neurology, 60: 1045–7.CrossRefGoogle Scholar
Seyal, M., Ro, T., & Rafal, R. (1995). Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe. Annals of Neurology, 38: 264–7.CrossRefGoogle ScholarPubMed
Shapiro, K. A., Pascual-Leone, A., Mottaghy, F. M., Gangitano, M., & Caramazza, A. (2001). Grammatical distinctions in the left frontal cortex. Journal of Cognitive Neuroscience, 13: 713–20.CrossRefGoogle ScholarPubMed
Silvanto, J., & Pascual-Leone, A. (2008). State-dependency of transcranial magnetic stimulation. Brain Topography, 21: 1–10.CrossRefGoogle ScholarPubMed
Silvanto, J., Cattaneo, Z., Battelli, L., & Pascual-Leone, A. (2008). Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. Journal of Neurophysiology, 99: 2725–30.CrossRefGoogle ScholarPubMed
Silvanto, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2007). Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. European Journal of Neuroscience, 25: 1874–81.CrossRefGoogle ScholarPubMed
Théoret, H., Haque, J., & Pascual-Leone, A. (2001). Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neuroscience Letters, 306: 29–32.CrossRefGoogle ScholarPubMed
Thompson, S. P. (1910). A physiological effect of an alternating magnetic field. Proceedings of the Royal Society, London, B82: 396–9.CrossRefGoogle Scholar
Thut, G., Théoret, H., Pfennig, A., et al. (2003). Differential effects of low- frequency rTMS at the occipital pole on visual-induced alpha desynchronization and visual-evoked potentials. Neuroimage, 18: 334–47.CrossRefGoogle ScholarPubMed
Valero-Cabré, A., Pascual-Leone, A., & Rushmore, R. J. (2008). Cumulative sessions of repetitive transcranial magnetic stimulation (rTMS) build up facilitation to subsequent TMS-mediated behavioural disruptions. European Journal of Neuroscience, 27: 765–74.CrossRefGoogle ScholarPubMed
Valero-Cabré, A., Payne, B. R., & Pascual-Leone, A. (2007). Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Experimental Brain Research, 176: 603–15.CrossRefGoogle ScholarPubMed
Valero-Cabré, A., Payne, B. R., Rushmore, J., Lomber, S. G., & Pascual-Leone, A. (2005). Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Experimental Brain Research, 163: 1–12.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Hester, D., Assal, G., & Regli, F. (1996). Unilateral spatial neglect recovery after sequential strokes. Neurology, 46: 184–9.CrossRefGoogle ScholarPubMed
Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9: 527–65.CrossRefGoogle ScholarPubMed
Walsh, V., & Pascual-Leone, A. (2003). Neurochronometrics of Mind: TMS in Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Walsh, V., Ellison, A., Battelli, L., & Cowey, A. (1998). Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proceedings of the Royal Society, Biological Sciences, 265: 537–43.CrossRefGoogle ScholarPubMed
Xiang, H. D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional connectivity pattern in the perisylvian language networks. Cerebral Cortex, 20: 549–60.CrossRefGoogle ScholarPubMed
Young, M. P., Hilgetag, C. C., & Scannell, J. W. (2000). On imputing function to structure from the behavioural effects of brain lesions. Philosophical Transactions of the Royal Society, Biological Sciences, 355: 147–61.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×