Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T06:31:51.807Z Has data issue: false hasContentIssue false

19 - Optogenetics Research in Behavioral Neuroscience: Insights into the Brain Basis of Reward Learning and Goal-directed Behavior

from Part IV - Optogenetics in Learning, Neuropsychiatric Diseases, and Behavior

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 276 - 291
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, CD. 1982. Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quart J Exp Psychol B 34: 7798.CrossRefGoogle Scholar
Aquili, L, Liu, AW, Shindou, M, Shindou, T, Wickens, JR. 2014. Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments. Learn Mem 21: 223231.CrossRefGoogle Scholar
Aravanis, AM, Wang, LP, Zhang, F, Meltzer, LA, Mogri, MZ, Schneider, MB, Deisseroth, K. 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4: S143156.CrossRefGoogle ScholarPubMed
Balleine, BW, Dickinson, A. 1998. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37: 407419.CrossRefGoogle ScholarPubMed
Barker, JM, Taylor, JR, Chandler, LJ. 2014. A unifying model of the role of the infralimbic cortex in extinction and habits. Learn Mem 21: 441448.CrossRefGoogle Scholar
Bernstein, JG, Boyden, ES. 2011. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15: 592600.CrossRefGoogle ScholarPubMed
Berridge, KC. 2001. Reward learning: Reinforcement, incentives, and expectations. In The Psychology of Learning and Motivation (ed. Medin, DL), pp. 223278. Academic Press, New York.Google Scholar
Berridge, KC. 2004. Motivation concepts in behavioral neuroscience. Physiol Behav 81: 179209.CrossRefGoogle ScholarPubMed
Berridge, KC, Robinson, TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309369.CrossRefGoogle ScholarPubMed
Butler, WN, Smith, KS, Taube, JS. 2015. Shifting the neural compass: reversible optical disruption of the head direction signal in vivo. Society for Neuroscience Abstracts 444.08.Google Scholar
Chang, SE, Todd, TP, Bucci, DJ, Smith, KS. 2015. Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of sign-tracking in rats. Eur J Neurosci 42: 31053116.CrossRefGoogle ScholarPubMed
Chang, SE, Wheeler, DS, Holland, PC. 2012. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiol Learn Mem 97: 441451.CrossRefGoogle ScholarPubMed
Chuong, AS, Miri, ML, Busskamp, V, Matthews, GA, Acker, LC, Sorensen, AT, Young, A, Klapoetke, NC, Henninger, MA, Kodandaramaiah, SB et al., 2014. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17: 11231129.CrossRefGoogle ScholarPubMed
Coutureau, E, Killcross, S. 2003. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res 146: 167174.CrossRefGoogle Scholar
Crego, AC, Marchuk, AG, Smith, KS. 2015. Investigating the role of striatum in habits with optogenetics in a plus maze paradigm. Society for Neuroscience Abstracts DP09.05/DP05.Google Scholar
Day, JJ, Carelli, RM. 2007. The nucleus accumbens and Pavlovian reward learning. Neuroscientist 13: 148159.CrossRefGoogle ScholarPubMed
Day, JJ, Roitman, MF, Wightman, RM, Carelli, RM. 2007. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10: 10201028.CrossRefGoogle ScholarPubMed
Deng, W, Goldys, EM, Farnham, MM, Pilowsky, PM. 2014. Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions. Am J Physiol Regul Integr Comp Physiol 307: R1292R1302.CrossRefGoogle ScholarPubMed
Dickinson, A. 1985. Actions and habits: the development of behavioral autonomy. Philos Trans R Soc Lond B Biol Sci 308: 6778.Google Scholar
Fenno, L, Yizhar, O, Deisseroth, K. 2011. The development and application of optogenetics. Annu Rev Neurosci 34: 389412.CrossRefGoogle ScholarPubMed
Ferster, CB, Skinner, BF. 1957. Schedules of Reinforcement. Appleton-Century-Crofts, New York.CrossRefGoogle ScholarPubMed
Flagel, SB, Clark, JJ, Robinson, TE, Mayo, L, Czuj, A, Willuhn, I, Akers, CA, Clinton, SM, Phillips, PE, Akil, H. 2010. A selective role for dopamine in stimulus–reward learning. Nature 469: 5357.CrossRefGoogle ScholarPubMed
Graybiel, AM. 2008. Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31: 359387.CrossRefGoogle Scholar
Gremel, CM, Costa, RM. 2013. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4: 2264.CrossRefGoogle ScholarPubMed
Han, X. 2012. In vivo application of optogenetics for neural circuit analysis. ACS Chem Neurosci 3: 577584.CrossRefGoogle ScholarPubMed
Hitchcott, PK, Quinn, JJ, Taylor, JR. 2007. Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine. Cereb Cortex 17: 28202827.CrossRefGoogle ScholarPubMed
Hsu, YW, Wang, SD, Wang, S, Morton, G, Zariwala, HA, de la Iglesia, HO, Turner, EE. 2014. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci 34: 1136611384.CrossRefGoogle Scholar
Ilango, A, Kesner, AJ, Keller, KL, Stuber, GD, Bonci, A, Ikemoto, S. 2014. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci 34: 817822.CrossRefGoogle Scholar
Jin, X, Tecuapetla, F, Costa, RM. 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17: 423430.CrossRefGoogle ScholarPubMed
Kamin, LJ. 1968. “Attention-like” processes in classical conditioning. In Miami Symposium on the Prediction of Behavior: Aversive Stimulation (ed. Jones, MR), pp. 931. University of Miami Press Coral Gables, Florida.Google Scholar
Kamin, LJ. 1969. Predictability, surprise, attention, and conditioning. In Punishment and Aversive Behavior (ed. Campbell, BA, Church, RM), pp. 279296. Appleton-Century-Crofts, New York.Google Scholar
Killcross, S, Coutureau, E. 2003. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13: 400408.CrossRefGoogle Scholar
Kravitz, AV, Owen, SF, Kreitzer, AC. 2013. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511: 2132.CrossRefGoogle Scholar
Lima, SQ, Hromadka, T, Znamenskiy, P, Zador, AM. 2009. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4: e6099.CrossRefGoogle Scholar
Lin, JY, Knutsen, PM, Muller, A, Kleinfeld, D, Tsien, RY. 2013. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16: 14991508.CrossRefGoogle ScholarPubMed
Luo, L, Callaway, EM, Svoboda, K. 2008. Genetic dissection of neural circuits. Neuron 57: 634660.CrossRefGoogle ScholarPubMed
Mahler, SV, Berridge, KC. 2009. Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci 29: 65006513.CrossRefGoogle ScholarPubMed
Mattis, J, Tye, KM, Ferenczi, EA, Ramakrishnan, C, O’Shea, DJ, Prakash, R, Gunaydin, LA, Hyun, M, Fenno, LE, Gradinaru, V et al., 2012. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9: 159172.CrossRefGoogle Scholar
Namburi, P, Beyeler, A, Yorozu, S, Calhoon, GG, Halbert, SA, Wichmann, R, Holden, SS, Mertens, KL, Anahtar, M, Felix-Ortiz, AC et al., 2015. A circuit mechanism for differentiating positive and negative associations. Nature 520: 675678.CrossRefGoogle Scholar
Neve, RL, Carlezon, WA Jr. 2002. Gene delivery into the brain using viral vectors. In Neuropsychopharmacology: The Fifth Generation of Progress (ed. Davis, KL, Charney, D, Coyle, JT, Nemeroff, C). Lippincott, Williams, & Wilkins, Pennsylvania.Google Scholar
Nicola, SM. 2007. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 191: 521550.CrossRefGoogle ScholarPubMed
Pascoli, V, Terrier, J, Hiver, A, Luscher, C. 2015. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88: 10541066.CrossRefGoogle ScholarPubMed
Robinson, TE, Yager, LM, Cogan, ES, Saunders, BT. 2014. On the motivational properties of reward cues: Individual differences. Neuropharmacology 76: 450459.CrossRefGoogle Scholar
Root, DH, Melendez, RI, Zaborszky, L, Napier, TC. 2015. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130: 2970.CrossRefGoogle ScholarPubMed
Rossi, MA, Sukharnikova, T, Hayrapetyan, VY, Yang, L, Yin, HH. 2013. Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8: e65799.CrossRefGoogle Scholar
Rothwell, PE, Hayton, SJ, Sun, GL, Fuccillo, MV, Lim, BK, Malenka, RC. 2015. Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 88: 345356.CrossRefGoogle Scholar
Saddoris, MP, Sugam, JA, Stuber, GD, Witten, IB, Deisseroth, K, Carelli, RM. 2015. Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making. Biol Psychiatry 77: 903911.CrossRefGoogle ScholarPubMed
Saunders, BT, Robinson, TE. 2012. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36: 25212532.CrossRefGoogle Scholar
Schoenbaum, G, Roesch, M. 2005. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47: 633636.CrossRefGoogle ScholarPubMed
Schultz, W. 2006. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57: 87115.CrossRefGoogle ScholarPubMed
Senn, V, Wolff, SB, Herry, C, Grenier, F, Ehrlich, I, Grundemann, J, Fadok, JP, Muller, C, Letzkus, JJ, Luthi, A. 2014. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81: 428437.CrossRefGoogle ScholarPubMed
Smith, KS, Berridge, KC, Aldridge, JW. 2011. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 108: E255E264.CrossRefGoogle ScholarPubMed
Smith, KS, Graybiel, AM. 2013a. A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79: 361374.CrossRefGoogle ScholarPubMed
Smith, KS, Graybiel, AM. 2013b. Using optogenetics to study habits. Brain Res 1511: 102114.CrossRefGoogle Scholar
Smith, KS, Graybiel, AM. 2014. Investigating habits: strategies, technologies and models. Front Behav Neurosci 8: 39.CrossRefGoogle ScholarPubMed
Smith, KS, Tindell, AJ, Aldridge, JW, Berridge, KC. 2009. Ventral pallidum roles in reward and motivation. Behav Brain Res 196: 155167.CrossRefGoogle Scholar
Smith, KS, Virkud, A, Deisseroth, K, Graybiel, AM. 2012. Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proc Natl Acad Sci U S A 109: 1893218937.CrossRefGoogle ScholarPubMed
Soudais, C, Skander, N, Kremer, EJ. 2004. Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. FASEB J 18: 391393.CrossRefGoogle ScholarPubMed
Stefanik, MT, Kalivas, PW. 2013. Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci 7: 213.CrossRefGoogle Scholar
Steinberg, EE, Keiflin, R, Boivin, JR, Witten, IB, Deisseroth, K, Janak, PH. 2013. A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16: 966973.CrossRefGoogle ScholarPubMed
Stuber, GD, Britt, JP, Bonci, A. 2012. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 71: 10611067.CrossRefGoogle ScholarPubMed
Stuber, GD, Sparta, DR, Stamatakis, AM, van Leeuwen, WA, Hardjoprajitno, JE, Cho, S, Tye, KM, Kempadoo, KA, Zhang, F, Deisseroth, K et al., 2011. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475: 377380.CrossRefGoogle ScholarPubMed
Taha, SA, Fields, HL. 2005. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci 25: 11931202.CrossRefGoogle ScholarPubMed
Thorndike, EL. 1898. Animal Intelligence: An Experimental Study of the Associative Processes in Animals. Macmillan, New York.CrossRefGoogle Scholar
Tindell, AJ, Smith, KS, Berridge, KC, Aldridge, JW. 2009. Dynamic computation of incentive salience: “wanting” what was never “liked”. J Neurosci 29: 1222012228.CrossRefGoogle ScholarPubMed
Tindell, AJ, Smith, KS, Peciña, S, Berridge, KC, Aldridge, JW. 2006. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96: 23992409.CrossRefGoogle Scholar
Tsai, HC, Zhang, F, Adamantidis, A, Stuber, GD, Bonci, A, de Lecea, L, Deisseroth, K. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324: 10801084.CrossRefGoogle ScholarPubMed
Tye, KM, Deisseroth, K. 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13: 251266.CrossRefGoogle Scholar
Tye, KM, Prakash, R, Kim, SY, Fenno, LE, Grosenick, L, Zarabi, H, Thompson, KR, Gradinaru, V, Ramakrishnan, C, Deisseroth, K. 2011. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471: 358362.CrossRefGoogle Scholar
Ugolini, G. 2010. Advances in viral transneuronal tracing. J Neurosci Methods 194: 220.CrossRefGoogle Scholar
Wall, NR, De La Parra, M, Callaway, EM, Kreitzer, AC. 2013. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79: 347360.CrossRefGoogle ScholarPubMed
Wickersham, IR, Finke, S, Conzelmann, KK, Callaway, EM. 2007. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4: 4749.CrossRefGoogle ScholarPubMed
Witten, IB, Steinberg, EE, Lee, SY, Davidson, TJ, Zalocusky, KA, Brodsky, M, Yizhar, O, Cho, SL, Gong, S, Ramakrishnan, C et al., 2011. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72: 721733.CrossRefGoogle ScholarPubMed
Yizhar, O, Fenno, LE, Davidson, TJ, Mogri, M, Deisseroth, K. 2011. Optogenetics in neural systems. Neuron 71: 934.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×