from PART 1 - SHORT COURSES
Published online by Cambridge University Press: 05 August 2014
Abstract
Through the main example of the Ornstein–Uhlenbeck semigroup, the Bakry–Emery criterion is presented as a main tool to get functional inequalities as Poincaré or logarithmic Sobolev inequalities. Moreover, an alternative method using the optimal mass transportation is also given to obtain the logarithmic Sobolev inequality.
Introduction
The goal of this course (given in 2009 in Grenoble) is to introduce inequalities as Poincaré or logarithmic Sobolev for diffusion semigroups. We will focus more on examples than on the general theory. A main tool to obtain those inequalities is the so-called Bakry–Emery Γ2-criterion. This criterion is well known to prove such inequalities and has also been used many times for other problems; see, for instance, [BÉ85, Bak06]. We will focus on the example of the Ornstein–Uhlenbeck semigroup and on the Γ2-criterion.
In Section 3.2 we investigate the main example of the Ornstein–Uhlenbeck semigroup, whereas in Section 3.3 we show how the Γ2-criterion implies such inequalities. In Section 3.4 we will explain an alternative method to get a logarithmic Sobolev inequality under curvature assumption. It is called the mass transportation method and has been introduced recently; see [CE02, OV00, CENV04, Vil09]. In this way we will also obtain another inequality called the Talagrand inequality or T2inequality.
The Ornstein–Uhlenbeck semigroup and the Gaussian measure
In the general setting, if (Xt)t≥0 is a Markov process on ℝn, then the family of operators
Pt(f)(x) = E(f (Xt)),
where X0 = x and a smooth function f, is defined as a Markov semigroup on ℝn. There are two main examples. The first one is the heat semigroup, which is associated with the Brownian motion on ℝn.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.