Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T09:29:32.668Z Has data issue: false hasContentIssue false

22 - Plasmonics

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 470 - 483
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendix, P. M., Reihani, S. N. S., and Oddershede, L. B. 2010. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano, 4, 2256–62.CrossRefGoogle ScholarPubMed
Borghese, F., Denti, P., Saija, R., and Iatì, M. A. 2007. Optical trapping of nonspherical particles in the T-matrix formalism. Opt. Express, 15, 11 984–98.Google ScholarPubMed
Bosanac, L., Aabo, T., Bendix, P. M., and Oddershede, L. B. 2008. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett., 8, 1486–91.CrossRefGoogle ScholarPubMed
Chen, C., Juan, M. L., Li, Y., et al. 2012. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Lett., 12, 125–32.CrossRefGoogle Scholar
Dienerowitz, M., Mazilu, M., and Dholakia, K. 2008. Optical manipulation of nanoparticles: A review. J. Nanophoton., 2, 021875.CrossRefGoogle Scholar
Garcés-Chávez, V., Quidant, R., Reece, P. J., et al. 2006. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B, 73, 085417.CrossRefGoogle Scholar
Gjonaj, B., Aulbach, J., Johnson, P. M., et al. 2011. Active spatial control of plasmonic fields. Nature Photon., 5, 360–63.CrossRefGoogle Scholar
Gordon, R., Kumar, L., Kiran Swaroop, L. K., and Brolo, A. G. 2006. Resonant light transmission through a nanohole in a metal film. IEEE Trans. Nanotechnol., 5, 291–4.CrossRefGoogle Scholar
Grigorenko, A. N., Roberts, N. W., Dickinson, M. R., and Zhang, Y. 2008. Nanometric optical tweezers based on nanostructured substrates. Nature Photon., 2, 365–70.CrossRefGoogle Scholar
Hajizadeh, F., and Reihani, S. N. S. 2010. Optimized optical trapping of gold nanoparticles. Opt. Express, 18, 551–9.CrossRefGoogle ScholarPubMed
Hansen, P. M., Bhatia, V. K., Harrit, N., and Oddershede, L. 2005. Expanding the optical trapping range of gold nanoparticles. Nano Lett., 5, 1937–42.CrossRefGoogle ScholarPubMed
Jones, P. H., Palmisano, F., Bonaccorso, F., et al. 2009. Rotation detection in light-driven nanorotors. ACS Nano, 3, 3077–84.CrossRefGoogle ScholarPubMed
Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F., and Quidant, R. 2009. Self-induced backaction optical trapping of dielectric nanoparticles. Nature Phys., 5, 915–19.CrossRefGoogle Scholar
Juan, M. L., Righini, M., and Quidant, R. 2011. Plasmon nano-optical tweezers. Nature Photon., 5, 349–56.CrossRefGoogle Scholar
Kumar, L. K. S., and Gordon, R. 2006. Overlapping double-hole nanostructure in a metal film for localized field enhancement. IEEE J. Sel. Top. Quant. Electron., 12, 1228–32.CrossRefGoogle Scholar
Kyrsting, A., Bendix, P. M., Stamou, D. G., and Oddershede, L. B. 2011. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett., 11, 888–92.CrossRefGoogle ScholarPubMed
Maier, S. A. 2007. Plasmonics: Fundamentals and applications. NewYork: SpringerVerlag.CrossRefGoogle Scholar
Messina, E., Cavallaro, E., Cacciola, A., et al. 2011. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano, 5, 905–13.CrossRefGoogle ScholarPubMed
Ohlinger, A., Nedev, S., Lutich, A. A., and Feldmann|J. 2011. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett., 11, 1770–4.Google ScholarPubMed
Pang, Y, and Gordon, R. 2011. Optical trapping of 12 nm dielectric spheres using doublenanoholes in a gold film. Nano Lett., 11, 3763–7.CrossRefGoogle Scholar
Pang, Y., and Gordon, R. 2012. Optical trapping of a single protein. Nano Lett., 12, 402–6.CrossRefGoogle ScholarPubMed
Pauzauskie, P. J., Radenovic, A., Trepagnier, E., et al. 2006. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater., 5, 97–101.CrossRefGoogle ScholarPubMed
Pelton, M., Liu, M., Kim, H. Y., et al. 2006. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett., 31, 2075–7.CrossRefGoogle ScholarPubMed
Ploschner, M., Mazilu, M., Krauss, T. F., and Dholakia, K. 2010. Optical forces near a nanoantenna. J. Nanophoton., 4, 041570.CrossRefGoogle Scholar
Quidant, R., and Girard, C. 2008. Surface-plasmon-based optical manipulation. Laser Photon. Rev., 2, 47–57.CrossRefGoogle Scholar
Quidant, R., Badenes, G., Cheylan, S., et al. 2004. Sub-wavelength patterning of the optical near-field. Opt. Express, 12, 282–7.CrossRefGoogle ScholarPubMed
Quidant, R., Petrov, D., and Badenes, G. 2005. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett., 30, 1009–11.CrossRefGoogle Scholar
Righini, M., Zelenina, A. S., Girard, C., and Quidant, R. 2007. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys., 3, 477–80.CrossRefGoogle Scholar
Righini, M., Girard, C., and Quidant, R. 2008a. Light-induced manipulation with surface plasmons. J. Opt. A Pure Appl. Opt., 10, 093001.CrossRefGoogle Scholar
Righini, M., Volpe, G., Girard, C., Petrov, D., and Quidant, R. 2008b. Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range. Phys. Rev. Lett., 100, 186804.CrossRefGoogle ScholarPubMed
Righini, M., Ghenuche, P., Cherukulappurath, S., et al. 2009. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett., 9, 3387–91.CrossRefGoogle ScholarPubMed
Ruijgrok, P.V., Verhart, N. R., Zijlstra, P., Tchebotareva, A. L., and Orrit, M. 2011. Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett., 107, 037401.CrossRefGoogle ScholarPubMed
Saija, R., Denti, P., Borghese, F., Maragò, O. M., and Iatì, M. A. 2009. Optical trapping calculations for metal nanoparticles: Comparison with experimental data for Au and Ag spheres. Opt. Express, 17, 10 231–41.CrossRefGoogle ScholarPubMed
Sainidou, R., and García de Abajo, F. J. 2008. Optically tunable surfaces with trapped particles in microcavities. Phys. Rev. Lett., 101, 136802.CrossRefGoogle ScholarPubMed
Selhuber-Unkel, C., Zins, I., Schubert, O., Sonnichsen, C., and Oddershede, L. B. 2008. Quantitative optical trapping of single gold nanorods. Nano Lett., 8, 2998–3003.CrossRefGoogle ScholarPubMed
Seol, Y., Carpenter, A. E., and Perkins, T. T. 2006. Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett., 31, 2429–31.CrossRefGoogle ScholarPubMed
Shoji, T., and Tsuboi, Y. 2014. Plasmonic optical tweezers toward molecular manipulation: Tailoring plasmonic nanostructure, light source, and resonant trapping. J. Phys. Chem. Lett., 5, 2957–67.CrossRefGoogle ScholarPubMed
Svoboda, K., and Block, S. M. 1994. Optical trapping of metallic Rayleigh particles. Opt. Lett., 19, 930–32.CrossRefGoogle ScholarPubMed
Tong, L., Miljkovic, V. D., and Käll, M. 2010. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett., 10, 268–73.CrossRefGoogle ScholarPubMed
Urban, A. S., Carretero-Palacios, S., Lutich, A. A., et al. 2014. Optical trapping and manipulation of plasmonic nanoparticles: Fundamentals, applications, and perspectives. Nanoscale, 6, 4458–74.CrossRefGoogle Scholar
Volpe, G., Quidant, R., Badenes, G., and Petrov, D. 2006. Surface plasmon radiation forces. Phys. Rev. Lett., 96, 238101.CrossRefGoogle ScholarPubMed
Volpe, G., Volpe, G., and Quidant, R. 2011. Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Opt. Express, 19, 3612–18.CrossRefGoogle ScholarPubMed
Wang, K., Schonbrun, E., Steinvurzel, P., and Crozier, K. B. 2011. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nature Commun., 2, 469.CrossRefGoogle ScholarPubMed
Yan, Z., Sweet, J., Jureller, J. E., et al. 2012a. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. ACS Nano, 6, 8144–55.CrossRefGoogle ScholarPubMed
Yan, Z., Jureller, J. E., Sweet, J., et al. 2012b. Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett., 12, 5155–61.CrossRefGoogle ScholarPubMed
Yan, Z., Pelton, M., Vigderman, L., Zubarev, E. R., and Scherer, N. F. 2013. Why singlebeam optical tweezers trap gold nanowires in three dimensions. ACS Nano, 7, 8794–800.CrossRefGoogle Scholar
Zhang, W., Huang, L., Santschi, C., and Martin, O. J. F. 2010. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett., 10, 1006–11.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×