Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T09:34:48.460Z Has data issue: false hasContentIssue false

7 - Brownian motion

from Part I - Theory

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 188 - 218
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brettschneider, T., Volpe, G., Helden, L.,Wehr, J., and Bechinger, C. 2011. Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method. Phys. Rev. E, 83, 041113.CrossRefGoogle ScholarPubMed
Brown, R. 1828. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4, 161–73.Google Scholar
De La Torre, J. G., Navarro, S., Lopez Martinez, M. C., Diaz, F. G., and Lopez Cascales, J. J. 1994. HYDRO: A computer program for the prediction of hydrodynamic properties of macromolecules. Biophys. J., 67, 530–31.Google Scholar
Einstein, A. 1905. Ǘber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik, 322, 549–60.CrossRefGoogle Scholar
Ermak, D. L., and McCammon, J. A. 1978. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69, 1352–60.CrossRefGoogle Scholar
Faxén, H. 1922. Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenenWänden eingeschlossen ist. Ann. Physik, 373, 89–119.CrossRefGoogle Scholar
Frenkel, D., and Smit, B. T. 2002. Understanding molecular simulations: From algorithms to applications. 2nd ed. Waltham, MA: Academic Press.Google Scholar
Happel, J., and Brenner, H. 1983. Low Reynolds number hydrodynamics. New York: Springer.Google Scholar
Irrera, A., Artoni, P., Saija, R., et al. 2011. Size-scaling in optical trapping of silicon nanowires. Nano Lett., 11, 4879–84.CrossRefGoogle ScholarPubMed
Karatzas, I., and Shreve, S. 1998. Brownian motion and stochastic calculus. New York: Springer Verlag.CrossRefGoogle Scholar
Kloeden, P. E., and Platen, E. 1999. Numerical solution of stochastic differential equations. Heidelberg: Springer Verlag.Google Scholar
Lau, A. W. C., and Lubensky, T. C. 2007. State-dependent diffusion: Thermodynamic consistency and its path integral formulation. Phys. Rev. E, 76, 011123.CrossRefGoogle ScholarPubMed
McCann, L. I., Dykman, M., and Golding, B. 1999. Thermally activated transitions in a bistable three-dimensional optical trap. Nature, 402, 785–7.CrossRefGoogle Scholar
Nelson, E. 1967. Dynamical theories of Brownian motion. Princeton, NJ: Princeton University Press.Google Scholar
Øksendal, B. 2003. Stochastic differential equations. Berlin: Springer Verlag.CrossRefGoogle Scholar
Perrin, F. 1934. Mouvement brownien d'un ellipsoide–I. Dispersion diélectrique pour des molécules ellipsoidales. J. Phys. Radium, 5, 497–511.CrossRefGoogle Scholar
Perrin, J. 1909. Mouvement Brownien et réalité moléculaire. Ann. Chimie Physique, 18, 5–114.Google Scholar
Purcell, E. M. 1977. Life at low Reynolds number. Am. J. Phys, 45, 3–11.CrossRefGoogle Scholar
Tirado, M. M., Martinez, C. L., and de la Torre, J. G. 1984. Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J. Chem. Phys., 81, 2047–52.CrossRefGoogle Scholar
Uhlenbeck, G. E., and Ornstein, L. S. 1930. On the theory of the Brownian motion. Phys. Rev., 36, 823–41.CrossRefGoogle Scholar
Volpe, G., and Petrov, D. 2006. Torque detection using Brownian fluctuations. Phys. Rev. Lett., 97, 210603.CrossRefGoogle ScholarPubMed
Volpe, G., and Volpe, G. 2013. Simulation of a Brownian particle in an optical trap. Am. J. Phys., 81, 224–30.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×