Book contents
- Frontmatter
- SECONDE SÉRIE
- RÉSUMÉ DES LEÇONS
- AVERTISSEMENT
- RÉSUMÉ DES LEÇONS DONNÉES A L'ÉCOLE ROYALE POLYTECHNIQUE SUR LE CALCUL INFINITÉSIMAL
- DEUXIÈME LEÇON. DES FONCTIONS CONTINUES ET DISCONTINUES. REPRÉSENTATION GÉOMÉTBIQUE DES FONCTIONS CONTINUES
- TROISIÈME LECON DÉRIVÉES DES FONCTIONS D'UNE SEULE VARIABLE
- QUATRIÈME LECON DIFFÈRENTIELLES DES FONCTIOKS D'UNE SEULE VARIABLE
- CINQUIÈME LECON
- SIXIÈME LEÇON
- SEPTIÈME LEÇON
- HUITIÈME LEÇON
- NEUVIÈME LEÇON
- DIXIÈME LEÇON
- ONZIÈME LEÇON. USAGE DES FACTEURS INDÉTERMINÉS DANS LA RECHERCHE DES MAXIMA ET MINIMA
- DOUZIÉME LEÇON. DIFÉRENTIELLES ET DEHIVÉES DES DIVERS ORDRES POUR LES FONCTIONS D'UNE SEULE VARIABLE. CHANGEMENT DE LA VARIABLE INDÉPENDANTE
- TREIZIÉME LEÇON. DIFFÉRENTIELLES DES DIVERS ORDRES POUR LES FONCTIONS DE PLUSIEURS VARIABLES
- QUATORZIÉME LEÇON METUODES PROPRES A SIMPLIFIER LA RECHERCHE DES DIFFÉRENTIELLES TOTALES, POCR LES FONCTIONS DE PLUSIEURS VARIABLES INDEPÉNDANTES VALEURS SYMBOLIQUES DE CES DIFFERÉNTIELLES
- QUINZIÈME LEÇON RELATIONS QUI EXISTENT ENTRE LES FONCT1ONS D'UNE SEULE VARIABLE ET LEURS DÉRIVÉES OU DIFFÉRENT1ELLES DES DIVERS ORDRES USAGE DE CES DIFFÉRENTIELLES DANS LA RECHERCHE DES MAXIMA ET MINIMA
- CALCUL DIFFERENTIEL. SEIZIÈME LECON. USAGE DES DIFFERENTIELLES DES DIVERS ORDKES BANS LA RECHERCHE DES MAXIMA ET MINIMA DES FONCTIONS DE PLUSIEURS VARIABLES
- DIX-SEPTIÈME LEÇON
- DIX-HUITIÈME LEÇON
- DIX-NEUVIÈME LEÇON. USAGE DES DÈRIVÉES ET DES DIFFÉRENTIELLES DES DIVERS ORDRES DANS LE DÉVELOPPEMENT DES FONCTIONS ENTIÈRES.
- VINGTIÈME LEÇON. DÉCOMPOSITION DES FRACTIONS RATIONNELLES
- CALCUL INTÉGRAL. VINGT ET UNIÈME LEÇON INTÉGRALES DÉFINIES
- VINGT-DEUXIÈME LEÇON. FORMULES POOR LA DÉTERMINATION DES VALEURS EXACTES OU APPROCHÉES DES INTÉGRALES BÉFINIES.
- VINGT-TROISIÈME LEÇON
- VINGT-QUATRIÈME LEÇON. DES INTÉGRALES DÉFINIES DONT LES VALEURS SONT INFINIES OU INDÉTERMINÉES. VALEURS PRINCIPALES DES INTÉGRALES INDÉTERMINÉES.
- VINGT-CINQUIÈME LEÇON. INTÉGRALES DÉFINIES SINGULIÈRES
- VINGT-SIXIÈME LEÇON. INTÉGRALES INDÉFINIES
- VINGT-SEPTIÈME LEÇON. PROPRIÉTIÉS DIVERSES DES INTÉGRALES INDÉFINIES MÉTHODES POUR DÉTERMINER LES VALEURS DE CES MÉMES INTÉGRALES.
- VINGT-HUITIÈME LEÇON. SUR LES INTÉGRALES INDÉFINIES QUI RENFERMENT DES FONCTIONS ALGÉBRIQUES.
- VINGT-NEUVIÈME LEÇON. SUR L'INTÉGRATION ET LA RÉDUCTION DES DIFFÉRENTIEILLES BINÔMES, ET DE QUELQUES AUTRES FOUMULES DIFFÉRENTIELLES DU MÔME GENRE
- TRENTIÈME LEÇON. SUR LES INTÉGRATES INDÉFINIES QUI RENFERMENT DES FONCTIONS EXPONENTIELLES, LOGARITHMIQUES OU CIRCULAIRES
- TRENTE ET UNIÈME LEÇON.
- TRENTE-DEUXIÈME LEÇON. SUR LE PASSAGE DES INTÉGRALES 1NDÉFINIES AUX INTÉGRALES DÉFINIES.
- TRENTE-TROISIÈME LEÇON. DIFFÉRENTIATION ET INTÉGRATION SOUS LE SIGNE ∫. INTÉGRATION DES FORMULES DIFFÉRENTIELLES QUI RENFERMENT PLUSIEURS VARIABLES INDÉPENDANTES
- TRENTE-QUATRIÈME LEÇON. COMPARAISON DES DEUX ESPÈCES D'INTÉGRALES SIMPLES QUI RÉSULTENT DANS CERTAINS CAS D'UNE INTÉGRATION DOUBLE.
- TRENTE-CINQUIÈME LEÇON
- TRENTE-SIXIÈME LEÇON.
- TRENTE-SEPTIÈME LEÇON
- TRENTE-HUITIÈME LEÇON
- TRENTE-NEUVIÈME LEÇON
- QUARANTIÈME LEÇON. INTÉGRATION PAR SÉRIES.
- ADDITION
- SUR LES FORMULES DE TAYLOR ET DE MACLAURIN
- LEÇONS SUR LE CALCUL DIFFÉRENTIEL
- TABLE DES MATIÈRES
RÉSUMÉ DES LEÇONS DONNÉES A L'ÉCOLE ROYALE POLYTECHNIQUE SUR LE CALCUL INFINITÉSIMAL
Published online by Cambridge University Press: 05 July 2011
- Frontmatter
- SECONDE SÉRIE
- RÉSUMÉ DES LEÇONS
- AVERTISSEMENT
- RÉSUMÉ DES LEÇONS DONNÉES A L'ÉCOLE ROYALE POLYTECHNIQUE SUR LE CALCUL INFINITÉSIMAL
- DEUXIÈME LEÇON. DES FONCTIONS CONTINUES ET DISCONTINUES. REPRÉSENTATION GÉOMÉTBIQUE DES FONCTIONS CONTINUES
- TROISIÈME LECON DÉRIVÉES DES FONCTIONS D'UNE SEULE VARIABLE
- QUATRIÈME LECON DIFFÈRENTIELLES DES FONCTIOKS D'UNE SEULE VARIABLE
- CINQUIÈME LECON
- SIXIÈME LEÇON
- SEPTIÈME LEÇON
- HUITIÈME LEÇON
- NEUVIÈME LEÇON
- DIXIÈME LEÇON
- ONZIÈME LEÇON. USAGE DES FACTEURS INDÉTERMINÉS DANS LA RECHERCHE DES MAXIMA ET MINIMA
- DOUZIÉME LEÇON. DIFÉRENTIELLES ET DEHIVÉES DES DIVERS ORDRES POUR LES FONCTIONS D'UNE SEULE VARIABLE. CHANGEMENT DE LA VARIABLE INDÉPENDANTE
- TREIZIÉME LEÇON. DIFFÉRENTIELLES DES DIVERS ORDRES POUR LES FONCTIONS DE PLUSIEURS VARIABLES
- QUATORZIÉME LEÇON METUODES PROPRES A SIMPLIFIER LA RECHERCHE DES DIFFÉRENTIELLES TOTALES, POCR LES FONCTIONS DE PLUSIEURS VARIABLES INDEPÉNDANTES VALEURS SYMBOLIQUES DE CES DIFFERÉNTIELLES
- QUINZIÈME LEÇON RELATIONS QUI EXISTENT ENTRE LES FONCT1ONS D'UNE SEULE VARIABLE ET LEURS DÉRIVÉES OU DIFFÉRENT1ELLES DES DIVERS ORDRES USAGE DE CES DIFFÉRENTIELLES DANS LA RECHERCHE DES MAXIMA ET MINIMA
- CALCUL DIFFERENTIEL. SEIZIÈME LECON. USAGE DES DIFFERENTIELLES DES DIVERS ORDKES BANS LA RECHERCHE DES MAXIMA ET MINIMA DES FONCTIONS DE PLUSIEURS VARIABLES
- DIX-SEPTIÈME LEÇON
- DIX-HUITIÈME LEÇON
- DIX-NEUVIÈME LEÇON. USAGE DES DÈRIVÉES ET DES DIFFÉRENTIELLES DES DIVERS ORDRES DANS LE DÉVELOPPEMENT DES FONCTIONS ENTIÈRES.
- VINGTIÈME LEÇON. DÉCOMPOSITION DES FRACTIONS RATIONNELLES
- CALCUL INTÉGRAL. VINGT ET UNIÈME LEÇON INTÉGRALES DÉFINIES
- VINGT-DEUXIÈME LEÇON. FORMULES POOR LA DÉTERMINATION DES VALEURS EXACTES OU APPROCHÉES DES INTÉGRALES BÉFINIES.
- VINGT-TROISIÈME LEÇON
- VINGT-QUATRIÈME LEÇON. DES INTÉGRALES DÉFINIES DONT LES VALEURS SONT INFINIES OU INDÉTERMINÉES. VALEURS PRINCIPALES DES INTÉGRALES INDÉTERMINÉES.
- VINGT-CINQUIÈME LEÇON. INTÉGRALES DÉFINIES SINGULIÈRES
- VINGT-SIXIÈME LEÇON. INTÉGRALES INDÉFINIES
- VINGT-SEPTIÈME LEÇON. PROPRIÉTIÉS DIVERSES DES INTÉGRALES INDÉFINIES MÉTHODES POUR DÉTERMINER LES VALEURS DE CES MÉMES INTÉGRALES.
- VINGT-HUITIÈME LEÇON. SUR LES INTÉGRALES INDÉFINIES QUI RENFERMENT DES FONCTIONS ALGÉBRIQUES.
- VINGT-NEUVIÈME LEÇON. SUR L'INTÉGRATION ET LA RÉDUCTION DES DIFFÉRENTIEILLES BINÔMES, ET DE QUELQUES AUTRES FOUMULES DIFFÉRENTIELLES DU MÔME GENRE
- TRENTIÈME LEÇON. SUR LES INTÉGRATES INDÉFINIES QUI RENFERMENT DES FONCTIONS EXPONENTIELLES, LOGARITHMIQUES OU CIRCULAIRES
- TRENTE ET UNIÈME LEÇON.
- TRENTE-DEUXIÈME LEÇON. SUR LE PASSAGE DES INTÉGRALES 1NDÉFINIES AUX INTÉGRALES DÉFINIES.
- TRENTE-TROISIÈME LEÇON. DIFFÉRENTIATION ET INTÉGRATION SOUS LE SIGNE ∫. INTÉGRATION DES FORMULES DIFFÉRENTIELLES QUI RENFERMENT PLUSIEURS VARIABLES INDÉPENDANTES
- TRENTE-QUATRIÈME LEÇON. COMPARAISON DES DEUX ESPÈCES D'INTÉGRALES SIMPLES QUI RÉSULTENT DANS CERTAINS CAS D'UNE INTÉGRATION DOUBLE.
- TRENTE-CINQUIÈME LEÇON
- TRENTE-SIXIÈME LEÇON.
- TRENTE-SEPTIÈME LEÇON
- TRENTE-HUITIÈME LEÇON
- TRENTE-NEUVIÈME LEÇON
- QUARANTIÈME LEÇON. INTÉGRATION PAR SÉRIES.
- ADDITION
- SUR LES FORMULES DE TAYLOR ET DE MACLAURIN
- LEÇONS SUR LE CALCUL DIFFÉRENTIEL
- TABLE DES MATIÈRES
Summary
CALCUL DIFFÉRENTIAL
PREMIÈRE LEÇON
DES VARIABLES, DE LEURS LIMITES ET DES QUANTITÉS INFINIMENT PETITES
On nomme quantité variable celle que l'on considére comme devant recevoir successivement plusieurs valeurs différentes les unes des autres. On appelle au contraire quantité constante toute quantité qui reçoit une valeur fixe et déterminée. Lorsque les valeurs successivement attributés à une même variable s'approchent indéfiniment d'une valeur fixe, de maniére a finir par en différer aussi peu que l'on voudra, cette dernière est appelée la limite de toutes les autres. Ainsi, par exemple, la surface du cercle est la limite vers laquelle convergent les surfaces des polygones réguliers inscrits, tandis que le nombre de leurs côtés croĩt de plus en plus; et le rayon vecteur, mené du centre d'une hyperbole à un point de la courbe qui s'éloigne de plus en plus de ce centre, forme avec l'axe des x un angle qui a pour limite l'angle formé par l'asymptote avec le même axe;.… Nous indiquerons la limite vers laquelle converge une variable donnée par l'abréviation lim placée devant cette variable.
Souvent les limites. vers lesquelles convergent des expressions variables se présentent sous une forme indéterminee, et néanmoins on peut encore fixer, à l'aide de méthodes particuliéres, les véritables valeurs de ces mêmes limites. Ainsi, par exemple, les limites dont s'approchent indéfiniment les deux expressions variables
tandis que αconverge vers zéro, se présentent sous les formes indéterminées et pourtant ces deux limites ont des valeurs fixes que l'on peut calculer comme il suit.
- Type
- Chapter
- Information
- Oeuvres complètesSeries 2, pp. 13 - 16Publisher: Cambridge University PressPrint publication year: 2009First published in: 1899
- 1
- Cited by