Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T07:22:29.059Z Has data issue: false hasContentIssue false

9 - Words and Pictures: Categories, Modifiers, Depiction, and Iconography

Published online by Cambridge University Press:  20 May 2010

Sven J. Dickinson
Affiliation:
University of Toronto
Aleš Leonardis
Affiliation:
University of Ljubljana
Bernt Schiele
Affiliation:
Technische Universität, Darmstadt, Germany
Michael J. Tarr
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

Introduction

Collections of digital pictures are now very common. Collections can range from a small set of family pictures, to the entire contents of a picture site like Flickr. Such collections differ from what one might see if one simply attached a camera to a robot and recorded everything, because the pictures have been selected by people. They are not necessarily “good” pictures (say, by standards of photographic aesthetics), but, because they have been chosen, they display quite strong trends. It is common for such pictures to have associated text, which might be keywords or tags but is often in the form of sentences or brief paragraphs. Text could be a caption (a set of remarks explicitly bound to the picture, and often typeset in a way that emphasizes this), region labels (terms associated with image regions, perhaps identifying what is in that region), annotations (terms associated with the whole picture, often identifying objects in the picture), or just nearby text. We review a series of ideas about how to exploit associated text to help interpret pictures.

Word Frequencies, Objects, and Scenes

Most pictures in electronic form seem to have related words nearby (or sound or metadata, and so on; we focus on words), so it is easy to collect word and picture datasets, and there are many examples. Such multimode collections should probably be seen as the usual case, because one usually has to deliberately ignore information to collect only images.

Type
Chapter
Information
Object Categorization
Computer and Human Vision Perspectives
, pp. 167 - 181
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×