Book contents
- Frontmatter
- Contents
- Preface
- Contributors
- 1 The Evolution of Object Categorization and the Challenge of Image Abstraction
- 2 A Strategy for Understanding How the Brain Accomplishes Object Recognition
- 3 Visual Recognition Circa 2008
- 4 On What It Means to See, and WhatWe Can Do About It
- 5 Generic Object Recognition by Inference of 3-D Volumetric Parts
- 6 What Has fMRI Taught Us About Object Recognition?
- 7 Object Recognition Through Reasoning About Functionality: A Survey of Related Work
- 8 The Interface Theory of Perception: Natural Selection Drives True Perception to Swift Extinction
- 9 Words and Pictures: Categories, Modifiers, Depiction, and Iconography
- 10 Structural Representation of Object Shape in the Brain
- 11 Learning Hierarchical Compositional Representations of Object Structure
- 12 Object Categorization in Man, Monkey, and Machine: Some Answers and Some Open Questions
- 13 Learning Compositional Models for Object Categories from Small Sample Sets
- 14 The Neurophysiology and Computational Mechanisms of Object Representation
- 15 From Classification to Full Object Interpretation
- 16 Visual Object Discovery
- 17 Towards Integration of Different Paradigms in Modeling, Representation, and Learning of Visual Categories
- 18 Acquisition and Disruption of Category Specificity in the Ventral Visual Stream: The Case of Late Developing and Vulnerable Face-Related Cortex
- 19 Using Simple Features and Relations
- 20 The Proactive Brain: Using Memory-Based Predictions in Visual Recognition
- 21 Spatial Pyramid Matching
- 22 Visual Learning for Optimal Decisions in the Human Brain
- 23 Shapes and Shock Graphs: From Segmented Shapes to Shapes Embedded in Images
- 24 Neural Encoding of Scene Statistics for Surface and Object Inference
- 25 Medial Models for Vision
- 26 Multimodal Categorization
- 27 Comparing 2-D Images of 3-D Objects
- Index
- Plate section
22 - Visual Learning for Optimal Decisions in the Human Brain
Published online by Cambridge University Press: 20 May 2010
- Frontmatter
- Contents
- Preface
- Contributors
- 1 The Evolution of Object Categorization and the Challenge of Image Abstraction
- 2 A Strategy for Understanding How the Brain Accomplishes Object Recognition
- 3 Visual Recognition Circa 2008
- 4 On What It Means to See, and WhatWe Can Do About It
- 5 Generic Object Recognition by Inference of 3-D Volumetric Parts
- 6 What Has fMRI Taught Us About Object Recognition?
- 7 Object Recognition Through Reasoning About Functionality: A Survey of Related Work
- 8 The Interface Theory of Perception: Natural Selection Drives True Perception to Swift Extinction
- 9 Words and Pictures: Categories, Modifiers, Depiction, and Iconography
- 10 Structural Representation of Object Shape in the Brain
- 11 Learning Hierarchical Compositional Representations of Object Structure
- 12 Object Categorization in Man, Monkey, and Machine: Some Answers and Some Open Questions
- 13 Learning Compositional Models for Object Categories from Small Sample Sets
- 14 The Neurophysiology and Computational Mechanisms of Object Representation
- 15 From Classification to Full Object Interpretation
- 16 Visual Object Discovery
- 17 Towards Integration of Different Paradigms in Modeling, Representation, and Learning of Visual Categories
- 18 Acquisition and Disruption of Category Specificity in the Ventral Visual Stream: The Case of Late Developing and Vulnerable Face-Related Cortex
- 19 Using Simple Features and Relations
- 20 The Proactive Brain: Using Memory-Based Predictions in Visual Recognition
- 21 Spatial Pyramid Matching
- 22 Visual Learning for Optimal Decisions in the Human Brain
- 23 Shapes and Shock Graphs: From Segmented Shapes to Shapes Embedded in Images
- 24 Neural Encoding of Scene Statistics for Surface and Object Inference
- 25 Medial Models for Vision
- 26 Multimodal Categorization
- 27 Comparing 2-D Images of 3-D Objects
- Index
- Plate section
Summary
Introduction
In our everyday interactions we encounter a plethora of novel experiences in different contexts that require prompt decisions for successful actions and social interactions. Despite the seeming ease with which we perform these interactions, extracting the key information from the highly complex input of the natural world and deciding how to classify and interpret it is a computationally demanding task for the primate visual system. Accumulating evidence suggests that the brain's solution to this problem relies on the combination of sensory information and previous knowledge about the environment. Although evolution and development have been suggested to shape the structure and organization of the visual system (Gilbert et al. 2001a; Simoncelli and Olshausen 2001), learning through everyday experiences has been proposed to play an important role in the adaptive optimization of visual functions. In particular, numerous behavioral studies have shown experience-dependent changes in visual recognition using stimuli ranging from simple features, such as oriented lines and gratings (Fahle 2004), to complex objects (Fine and Jacobs 2002). Recent neurophysiological (Logothetis et al. 1995; Rolls 1995; Kobatake et al. 1998; Rainer and Miller 2000; Jagadeesh et al. 2001; Schoups et al. 2001b; Baker et al. 2002; Ghose et al. 2002; Lee et al. 2002; Sigala and Logothetis 2002; Freedman et al. 2003; Miyashita 2004; Rainer et al. 2004; Yang and Maunsell 2004) and functional magnetic resonance imaging (fMRI) investigations (Dolan et al. 1997; Gauthier et al. 1999; Schiltz et al. 1999; Grill-Spector et al. 2000; van Turennout et al. 2000; Furmanski et al. 2004; Kourtzi et al. 2005b) have focused on elucidating the loci of brain plasticity and changes in neuronal responses that underlie this visual learning.
- Type
- Chapter
- Information
- Object CategorizationComputer and Human Vision Perspectives, pp. 416 - 429Publisher: Cambridge University PressPrint publication year: 2009