Book contents
- Frontmatter
- Contents
- Preface
- Suggestions for using this book
- 1 General relativity preliminaries
- 2 The 3 + 1 decompostion of Einstein's equations
- 3 Constructing initial data
- 4 Choosing coordinates: the lapse and shift
- 5 Matter sources
- 6 Numerical methods
- 7 Locating black hole horizons
- 8 Spherically symmetric spacetimes
- 9 Gravitational waves
- 10 Collapse of collisionless clusters in axisymmetry
- 11 Recasting the evolution equations
- 12 Binary black hole initial data
- 13 Binary black hole evolution
- 14 Rotating stars
- 15 Binary neutron star initial data
- 16 Binary neutron star evolution
- 17 Binary black hole–neutron stars: initial data and evolution
- 18 Epilogue
- A Lie derivatives, Killing vectors, and tensor densities
- B Solving the vector Laplacian
- C The surface element on the apparent horizon
- D Scalar, vector and tensor spherical harmonics
- E Post-Newtonian results
- F Collisionless matter evolution in axisymmetry: basic equations
- G Rotating equilibria: gravitational field equations
- H Moving puncture representions of Schwarzschild: analytical results
- I Binary black hole puncture simulations as test problems
- References
- Index
Preface
Published online by Cambridge University Press: 05 March 2013
- Frontmatter
- Contents
- Preface
- Suggestions for using this book
- 1 General relativity preliminaries
- 2 The 3 + 1 decompostion of Einstein's equations
- 3 Constructing initial data
- 4 Choosing coordinates: the lapse and shift
- 5 Matter sources
- 6 Numerical methods
- 7 Locating black hole horizons
- 8 Spherically symmetric spacetimes
- 9 Gravitational waves
- 10 Collapse of collisionless clusters in axisymmetry
- 11 Recasting the evolution equations
- 12 Binary black hole initial data
- 13 Binary black hole evolution
- 14 Rotating stars
- 15 Binary neutron star initial data
- 16 Binary neutron star evolution
- 17 Binary black hole–neutron stars: initial data and evolution
- 18 Epilogue
- A Lie derivatives, Killing vectors, and tensor densities
- B Solving the vector Laplacian
- C The surface element on the apparent horizon
- D Scalar, vector and tensor spherical harmonics
- E Post-Newtonian results
- F Collisionless matter evolution in axisymmetry: basic equations
- G Rotating equilibria: gravitational field equations
- H Moving puncture representions of Schwarzschild: analytical results
- I Binary black hole puncture simulations as test problems
- References
- Index
Summary
What is numerical relativity?
General relativity – Einstein's theory of relativistic gravitation – is the cornerstone of modern cosmology, the physics of neutron stars and black holes, the generation of gravitational radiation, and countless other cosmic phenomena in which strong-field gravitation plays a dominant role. Yet the theory remains largely untested, except in the weak-field, slow-velocity regime. Moreover, solutions to Einstein's equations, except for a few idealized cases characterized by high degrees of symmetry, have not been obtained as yet for many of the important dynamical scenarios thought to occur in nature. With the advent of supercomputers, it is now possible to tackle these complicated equations numerically and explore these scenarios in detail. That is the main goal of numerical relativity, the art and science of developing computer algorithms to solve Einstein's equations for astrophysically realistic, high-velocity, strong-field systems.
Numerical relativity has become one of the most powerful probes of relativistic spacetimes. It is the tool that allows us to recreate cataclysmic cosmic phenomena that are otherwise inaccessible in the conventional laboratory – like gravitational collapse to black holes and neutron stars, the inspiral and coalescence of binary black holes and neutron stars, and the generation and propagation of gravitational waves, to name a few. Numerical relativity picks up where post-Newtonian theory and general relativistic perturbation theory leave off. It enables us to follow the full nonlinear growth of relativistic instabilities and determine the final fate of unstable systems.
- Type
- Chapter
- Information
- Numerical RelativitySolving Einstein's Equations on the Computer, pp. xi - xviPublisher: Cambridge University PressPrint publication year: 2010