Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-07T21:13:19.952Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  05 September 2012

J. F. Humphreys
Affiliation:
University of Liverpool
M. Y. Prest
Affiliation:
University of Manchester
Get access

Summary

‘A group is a set endowed with a specified binary operation which is associative and for which there exist an identity element and inverses.’ This, in effect, is how many books on group theory begin. Yet this tells us little about groups or why we should study them. In fact, the concept of a group evolved from examples in number theory, algebra and geometry and it has applications in many contexts. Our presentation of group theory in this book reflects to some extent the historical development of the subject. Indeed, the formal definition of an abstract group does not occur until the fourth chapter. We believe that, apart from being more ‘honest’ than the usual presentation, this approach has definite pedagogic advantages. In particular, the student is not presented with a seemingly unmotivated abstract definition but, rather, sees the sense of the definition in terms of the previously introduced special cases. Moreover, the student will realise that these concepts, which may be so glibly presented, actually evolved slowly over a period of time.

The choice of topics in the book is motivated by the wish to provide a sound, rigorous and historically based introduction to group theory. In the sense that complete proofs are given of the results, we do not depart from tradition. We have, however, tried to avoid the dryness frequently associated with a rigorous approach.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • J. F. Humphreys, University of Liverpool, M. Y. Prest, University of Manchester
  • Book: Numbers, Groups and Codes
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812187.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • J. F. Humphreys, University of Liverpool, M. Y. Prest, University of Manchester
  • Book: Numbers, Groups and Codes
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812187.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • J. F. Humphreys, University of Liverpool, M. Y. Prest, University of Manchester
  • Book: Numbers, Groups and Codes
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511812187.003
Available formats
×