Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observational astronomy: the search for black holes
- Nucleosynthesis basics and applications to supernovae
- Signatures of nucleosynthesis in explosive stellar processes
- Neutrino transport and large-scale convection in core-collapse supernovae
- Neutron stars
- Massive neutrinos
- Cosmic ray physics and astrophysics
- Physical cosmology for nuclear astrophysicists
Observational astronomy: the search for black holes
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observational astronomy: the search for black holes
- Nucleosynthesis basics and applications to supernovae
- Signatures of nucleosynthesis in explosive stellar processes
- Neutrino transport and large-scale convection in core-collapse supernovae
- Neutron stars
- Massive neutrinos
- Cosmic ray physics and astrophysics
- Physical cosmology for nuclear astrophysicists
Summary
A brief review of key concepts in multifrequency observational astronomy is presented. The basic physical scales in astronomy as well as the concept of stellar evolution are also introduced. As examples of the application of multifrequency astronomy, recent results related to the observational search for black holes in binary systems in our Galaxy and in the centers of other galaxies is described. Finally, the recently discovered microquasars are discussed. These are galactic sources that mimic in a smaller scale the remarkable relativistic phenomena observed in distant quasars.
Introduction
There have been many outstanding observational and theoretical discoveries made in astronomy during the twentieth century. However, in the future this ending century will most probably be remembered not by these achievements, but by being the time when astronomers started observing the Cosmos with a variety of techniques and in particular when we started to use all the “windows” in the electromagnetic spectrum.
During our century we started to investigate systematically the Universe using:
The whole electromagnetic spectrum. At the beginning of the century, practically all the data was coming from the visible photons (that is, those detected by the human eye) only.
Cosmic rays. These charged particles hit the Earth's atmosphere and can be detected by the air showers they produce. The origin of the most energetic cosmic rays (1019 ergs or more) remains a mystery.
[…]
- Type
- Chapter
- Information
- Nuclear and Particle Astrophysics , pp. 1 - 26Publisher: Cambridge University PressPrint publication year: 1998