Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- 1 Nonlinear Theories of Elasticity of Plates and Shells
- 2 Nonlinear Theories of Doubly Curved Shells for Conventional and Advanced Materials
- 3 Introduction to Nonlinear Dynamics
- 4 Vibrations of Rectangular Plates
- 5 Vibrations of Empty and Fluid-Filled Circular Cylindrical Shells
- 6 Reduced-Order Models: Proper Orthogonal Decomposition and Nonlinear Normal Modes
- 7 Comparison of Different Shell Theories for Nonlinear Vibrations and Stability of Circular Cylindrical Shells
- 8 Effect of Boundary Conditions on Large-Amplitude Vibrations of Circular Cylindrical Shells
- 9 Vibrations of Circular Cylindrical Panels with Different Boundary Conditions
- 10 Nonlinear Vibrations and Stability of Doubly Curved Shallow-Shells: Isotropic and Laminated Materials
- 11 Meshless Discretizatization of Plates and Shells of Complex Shape by Using the R-Functions
- 12 Vibrations of Circular Plates and Rotating Disks
- 13 Nonlinear Stability of Circular Cylindrical Shells under Static and Dynamic Axial Loads
- 14 Nonlinear Stability and Vibration of Circular Shells Conveying Fluid
- 15 Nonlinear Supersonic Flutter of Circular Cylindrical Shells with Imperfections
- Index
- References
2 - Nonlinear Theories of Doubly Curved Shells for Conventional and Advanced Materials
Published online by Cambridge University Press: 08 January 2010
- Frontmatter
- Contents
- Preface
- Introduction
- 1 Nonlinear Theories of Elasticity of Plates and Shells
- 2 Nonlinear Theories of Doubly Curved Shells for Conventional and Advanced Materials
- 3 Introduction to Nonlinear Dynamics
- 4 Vibrations of Rectangular Plates
- 5 Vibrations of Empty and Fluid-Filled Circular Cylindrical Shells
- 6 Reduced-Order Models: Proper Orthogonal Decomposition and Nonlinear Normal Modes
- 7 Comparison of Different Shell Theories for Nonlinear Vibrations and Stability of Circular Cylindrical Shells
- 8 Effect of Boundary Conditions on Large-Amplitude Vibrations of Circular Cylindrical Shells
- 9 Vibrations of Circular Cylindrical Panels with Different Boundary Conditions
- 10 Nonlinear Vibrations and Stability of Doubly Curved Shallow-Shells: Isotropic and Laminated Materials
- 11 Meshless Discretizatization of Plates and Shells of Complex Shape by Using the R-Functions
- 12 Vibrations of Circular Plates and Rotating Disks
- 13 Nonlinear Stability of Circular Cylindrical Shells under Static and Dynamic Axial Loads
- 14 Nonlinear Stability and Vibration of Circular Shells Conveying Fluid
- 15 Nonlinear Supersonic Flutter of Circular Cylindrical Shells with Imperfections
- Index
- References
Summary
Introduction
In this chapter, more advanced problems of finite deformation (geometric nonlinearity) of shells and plates are considered. Initially, Donnell's and Novozhilov's nonlinear theories for doubly curved shells with constant curvature are presented. Then, the classical theory for thin shells of arbitrary shape is presented, which makes use of the theory of surfaces. Composite, sandwich and innovative functionally graded materials are introduced in the next section. In order to deal with these special materials and with moderately thick shells, nonlinear shear deformation theories are introduced. These theories, formulated for shells, can easily be modified to be applied to laminated, sandwich and functionally graded plates by setting the surface curvature equal to zero. Finally, the effect of thermal stresses is addressed.
Doubly Curved Shells of Constant Curvature
A doubly curved shell with rectangular base is considered, as shown in Figure 2.1. A curvilinear coordinate system (O; x, y, z) having the origin O at one edge of the panel is assumed; the curvilinear coordinates are defined as x = ψ Rx and y = ϑ Ry, where ψ and θ are the angular coordinates and Rx and Ry are principal radii of curvature (constant); a and b are the curvilinear lengths of the edges and h is the shell thickness. The smallest radius of curvature at every point of the shell is larger than the greatest lengths measured along the middle surface of the shell.
- Type
- Chapter
- Information
- Nonlinear Vibrations and Stability of Shells and Plates , pp. 52 - 89Publisher: Cambridge University PressPrint publication year: 2008