Published online by Cambridge University Press: 15 December 2009
Ordinary nonmagnetic fluids are known to become turbulent at sufficiently high Reynolds numbers and a similar behavior is expected for electrically conducting magnetized fluids, though direct experimental evidence is scarce. Some confusion may arise, however, owing to the convention, widespread in the fusion research community, of calling the Lundquist number S = LvA/η the magnetic Reynolds number, the latter being correctly defined by Rm = Lv/η, where v is some average fluid velocity. S ≫ 1 simply means that the resistivity is small, while the system may well be nonturbulent, or even static corresponding to Rm ≃ 0. S is an important theoretical parameter characterizing growth rates of possible resistive instabilities. But only when large fluid velocities are generated in the nonlinear phase of an instability or by some external stirring Rm can become large, making the system prone to turbulence. MHD turbulence can thus be expected only in strongly dynamic systems, e.g. disruptive processes in tokamaks or flares in the solar atmosphere.
Though the behavior at Reynolds numbers close to the critical value, where the transition from laminar flow to turbulence occurs, has recently attracted much attention, the strongest interest is in the high-Reynolds-number regime, where turbulence is fully developed, which is characteristic of most turbulent fluids in nature.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.