Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-19T00:20:52.553Z Has data issue: false hasContentIssue false

Noncommutative localization in topology

Published online by Cambridge University Press:  19 October 2009

Andrew Ranicki
Affiliation:
University of Edinburgh
Get access

Summary

Introduction

The topological applications of the Cohn noncommutative localization considered in this paper deal with spaces (especially manifolds) with infinite fundamental group, and involve localizations of infinite group rings and related triangular matrix rings. Algebraists have usually considered noncommutative localization of rather better behaved rings, so the topological applications require new algebraic techniques.

Part 1 is a brief survey of the applications of noncommutative localization to topology: finitely dominated spaces, codimension 1 and 2 embeddings (knots and links), homology surgery theory, open book decompositions and circle-valued Morse theory. These applications involve chain complexes and the algebraic K- and L-theory of the noncommutative localization of group rings.

Part 2 is a report on work on chain complexes over generalized free products and the related algebraic K- and L-theory, from the point of view of noncommutative localization of triangular matrix rings. Following Bergman and Schofield, a generalized free product of rings can be constructed as a noncommutative localization of a triangular matrix ring. The novelty here is the explicit connection to the algebraic topology of manifolds with a generalized free product structure realized by a codimension 1 submanifold, leading to noncommutative localization proofs of the results of Waldhausen and Cappell on the algebraic K- and L-theory of generalized free products. In a sense, this is more in the nature of an application of topology to noncommutative localization! But this algebra has in turn topological applications, since in dimensions ≥ 5 the surgery classification of manifolds within a homotopy type reduces to algebra.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×