Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T01:22:30.644Z Has data issue: false hasContentIssue false

17 - Hypoxic–ischemic encephalopathy

from Section 4 - Clinical aspects

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

The role of hypoxia–ischemia in perinatal brain injury

Injury to the brain depends on not only the type and severity of insult, but also the maturity of the tissue. Hypoxic–ischemic encephalopathy is generally considered to be characteristic of the term infant who has experienced a severe perinatal deficit in cerebral oxygen delivery leading to disruption of cerebral energy metabolism (Volpe, 1994). This is frequently followed by a global hypoxic–ischemic injury, with a widespread although not uniform distribution of apoptotic and necrotic cell death. Nevertheless, focal cerebral infarction is also seen in term infants, and may be underdiagnosed unless sophisticated techniques such as diffusion-weighted magnetic resonance imaging (MRI) are used (Cowan et al., 1994). Hypoxic–ischemic changes are also seen in many stillbirths although in these infants apoptotic death may be particularly prominent (Edwards et al., 1997).

Uncertainty about the role of intrauterine hypoxemia or cerebral ischemia is exacerbated by the imprecise measures of fetal oxygenation or cerebral blood flow available to clinicians. Observations of clinical variables such as cardiotocography or meconium staining of the liquor may mislead if interpreted as precise measures of fetal cerebral hypoxia and ischemia (Nelson et al., 1998). However, more accurate techniques such as magnetic resonance spectroscopy (MRS) have defined at least a subgroup of infants with characteristic hypoxic–ischemic injury, and it is clear that cerebral hypoxia and/or ischemia is involved in a significant proportion of neonatal encephalopathy (Azzopardi et al., 1989).

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 261 - 280
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarin, L., González, B., Castellano, B., et al. (1996). Microglial response to N-methyl-d-aspartate-mediated excitotoxicity in the immature rat brain. Journal of Comparative Neurology, 367, 361–74.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Akopov, S., Sercombe, R., & Seylaz, J. (1996). Cerebrovascular reactivity: role of endothelium/platelet/leucocyte interactions. Cerebrovascular and Brain Metabolism Reviews, 8, 11–94.Google Scholar
Aly, H., Khashaba, M. T., El-Ayout, Y. M., et al. (2006). IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Development, 28, 178–82.CrossRefGoogle ScholarPubMed
Armstead, W. M., Mirro, R., Busija, D. W., et al. (1988). Postischemic generation of superoxide anion by newborn pig brain. American Journal of Physiology, 255, H401–H3.Google ScholarPubMed
Armstead, W. M., Mirro, R., Thelin, O. P., et al. (1992). Polyethylene glycol superoxide dismutase and catalase attenuate increased blood-brain barrier permeability after ischemia in piglets. Stroke, 23, 755–62.CrossRefGoogle ScholarPubMed
Ashwal, S., Cole, D. J., Osborne, S., et al. (1995). l-NAME reduces infarct volume in a filament model of transient middle cerebral artery occlusion in the rat pup. Pediatric Research, 38, 652–6.CrossRefGoogle Scholar
Azzopardi, D., Wyatt, J. S., Cady, E. B., et al. (1989). Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatric Research, 25, 445–51.CrossRefGoogle ScholarPubMed
Back, S. A., Craig, A., Kayton, R. J., et al. (2006). Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. Journal of Cerebral Blood Flow and Metabolism, 27, 334–7.CrossRefGoogle ScholarPubMed
Bågenholm, R., Andine, P., & Hagberg, H. (1996). Effects of the 21-amino steroid tirilazad mesylate (U-74006F) on brain damage and edema after perinatal hypoxia-ischemia in the rat. Pediatric Research, 40, 399–403.CrossRefGoogle ScholarPubMed
Bågenholm, R., Nilsson, U. A., Götberg, C. W., et al. (1998). Free radicals are formed in the brain of fetal sheep during reperfusion after cerebral ischemia. Pediatric Research, 43, 271–5.CrossRefGoogle ScholarPubMed
Bazan, N. G., Palacios-Pelaez, R., & Lukiw, W. J. (2002). Hypoxia signaling to genes: significance in Alzheimer's disease. Molecular Neurobiology, 26, 283–98.CrossRefGoogle ScholarPubMed
Bell, M. J. & Hallenbeck, J. M. (2004). Determining the fetal inflammatory response in an experimental model of intrauterine inflammation in rats. Pediatric Research, 56, 541–6.CrossRefGoogle Scholar
Benchoua, A., Braudeau, J., Reis, A., et al. (2004). Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 24, 1272–9.CrossRefGoogle ScholarPubMed
Bickler, P. E. & Hansen, B. M. (1998). Hypoxia-tolerant neonatal CA1 neurons: relationship of survival to evoked glutamate release and glutamate receptor-mediated calcium changes in hippocampal slices. Brain Research Developmental Brain Research, 106, 57–69.CrossRefGoogle ScholarPubMed
Bickler, P., Gallego, S., & Hansen, B. (1993). Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia. Journal of Cerebral Blood Flow and Metabolism, 13, 811–19.CrossRefGoogle ScholarPubMed
Blennow, M., Ingvar, M., Lagercrantz, H., et al. (1995). Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatrica, 84, 1289–95.CrossRefGoogle ScholarPubMed
Blomgren, K. & Hagberg, H. (2006). Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radicals in Biology and Medicine, 40, 388–97.CrossRefGoogle ScholarPubMed
Blomgren, K., Kawashima, S., Saido, T. C., et al. (1995a). Fodrin degradation and subcellular distribution of calpains after neonatal rat cerebral hypoxic-ischemia. Brain Research, 684, 143–9.CrossRefGoogle ScholarPubMed
Blomgren, K., McRae, A., Bona, E., et al. (1995b). Degradation of fodrin and MAP 2 after neonatal cerebral hypoxic- ischemia. Brain Research, 684, 136–42.CrossRefGoogle ScholarPubMed
Blomgren, K., McRae, A., Elmered, A., et al. (1997). The calpain proteolytic system in neonatal hypoxic-ischemia. Annals of the New Youk Academy of Science, 825, 104–19.CrossRefGoogle ScholarPubMed
Blomgren, K., Zhu, C., Wang, X., et al. (2001). Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”?Journal of Biological Chemistry, 276, 10191–8.CrossRefGoogle ScholarPubMed
Blumberg, R. M., Cady, E. B., Wigglesworth, J. S., et al. (1996). Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia ischaemia in the developing brain. Experimental Brain Research, 113, 130–7.CrossRefGoogle Scholar
Blumberg, R. M., Taylor, D. L., Yue, X., et al. (1999). Increased nitric oxide synthesis is not involved in delayed cerebral energy failure following focal hypoxic-ischaemic injury in the developing brain. Pediatric Research, 46, 224–31.CrossRefGoogle ScholarPubMed
Bona, E., Andersson, A. L., Blomgren, K., et al. (1999). Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatric Research, 45, 500–9.CrossRefGoogle ScholarPubMed
Bruce, A. J., Boling, W., Kindy, M. S., et al. (1996). Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Medicine, 2, 788–94.CrossRefGoogle ScholarPubMed
Cady, E. B. (1990). Clinical Magnetic Resonance Spectroscopy. New York: Plenum.CrossRefGoogle Scholar
Cao, C. X., Yang, Q. W., Lv, F. L., et al. (2006). Reduced cerebral ischemia–reperfusion injury in Toll-like receptor 4 deficient mice. Biochemistry Biophysics Research Communication, 353, 509–14.CrossRefGoogle ScholarPubMed
Caso, S., Pradillo, O., Hurtado, P., et al. (2007). Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 115, 1599–608.CrossRefGoogle ScholarPubMed
Chen, C. K., Silverstein, F. S., Statman, D., et al. (1988). Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover. Journal of Neurochemistry, 51, 353–9.CrossRefGoogle ScholarPubMed
Cheng, Y., Deshmukh, M., D'Costa, A., et al. (1998). Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. Journal of Clinical Investigation, 101, 1992–9.CrossRefGoogle Scholar
Chiesa, C., Pellegrini, A., Panero, T., et al. (2003). Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. European Journal of Clinical Investigations, 33, 352–8.CrossRefGoogle ScholarPubMed
Choi, D. W. (1995). Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends in Neurosciences, 18, 58–60.CrossRefGoogle ScholarPubMed
Chumas, P. D., Del Bigio, M. R., Drake, J. M., et al. (1993). A comparison of the protective effect of dexamethasone to other potential prophylactic agents in a neonatal rat model of cerebral hypoxia-ischemia. Journal of Neurosurgery, 79, 414–20.CrossRefGoogle Scholar
Cimino, M., Balduiniy, W., Carloni, S., et al. (2005). Neuroprotective effect of simvastatin in stroke: a comparison between adult and neonatal rat models of cerebral ischemia. Neurotoxicology, 26, 929–33.CrossRefGoogle ScholarPubMed
Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochemical Journal, 326, 1–16.CrossRefGoogle Scholar
Cowan, F., Pennock, J. M., Hanrahan, D., et al. (1994). Early detection of infarction and hypoxic-ischaemic encephalopathy in neonates using diffusion weighted magnetic resonance imaging. Neuropediatrics, 25, 172–5.CrossRefGoogle ScholarPubMed
Croall, D. E. & DeMartino, G. N. (1991). Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiological Reviews, 71, 813–47.CrossRefGoogle ScholarPubMed
Crow, J. P. & Beckman, J. S. (1995). The role of peroxynitrite in nitric oxide-mediated toxicity. Current Topics in Microbiology and Immunology, 196, 57–73.Google ScholarPubMed
Dawson, V. L., Dawson, T. M., Bartley, D. A., et al. (1993). Mechanisms of nitric oxide-mediated neurotoxocity in primary brain cultures. Journal of Neuroscience, 13, 2651–61.CrossRefGoogle Scholar
Dietrich, N., Thastrup, J., Holmberg, C., et al. (2004). JNK2 mediates TNF-induced cell death in mouse embryonic fibroblasts via regulation of both caspase and cathepsin protease pathways. Cell Death and Differentiation, 11, 301–13.CrossRefGoogle ScholarPubMed
Dihne, M. & Block, F. (2001). Focal ischemia induces transient expression of IL-6 in the substantia nigra pars reticulata. Brain Research, 889, 165–73.CrossRefGoogle ScholarPubMed
Ditelberg, J. S., Sheldon, R. A., Epstein, C. J., et al. (1996). Brain injury after perinatal hypoxia-ischemia is exacerbated in copper/zinc superoxide dismutase transgenic mice. Pediatric Research, 39, 204–8.CrossRefGoogle ScholarPubMed
Domoki, F., Perciaccante, J. V., Puskar, M., et al. (2001). Cyclooxygenase-2 inhibitor NS398 preserves neuronal function after hypoxia/ischemia in piglets. Neuroreport, 12, 4065–8.CrossRefGoogle ScholarPubMed
Du, C., Hu, R., Csernansky, C. A., et al. (1996). Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis?Journal of Cerebral Blood Flow and Metabolism, 16, 195–201.CrossRefGoogle ScholarPubMed
Edwards, A. D., Yue, X., Cox, P., et al. (1997). Apoptosis in the brains of infants suffering intrauterine cerebral injury. Pediatric Research, 42, 684–9.CrossRefGoogle ScholarPubMed
Edwards, A. D., Wyatt, J. S., & Thoresen, M. (1998). Treatment of hypoxic-ischaemic brain damage by moderate hypothermia. Archives of Disease in Childhood, 78, F85–F8.CrossRefGoogle ScholarPubMed
Eliasson, M. J. L., Blackshaw, S., Schell, M. J., et al. (1997). Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proceedings of the National Academy of Sciences of the U S A, 94, 3396–401.CrossRefGoogle Scholar
Felderhoff-Mueser, U., Taylor, D. L., Greenwood, K., et al. (2000). Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathology, 10, 17–29.CrossRefGoogle ScholarPubMed
Ferriero, D. M., Sheldon, R. A., Black, S. M., et al. (1995). Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatric Research, 38, 912–18.CrossRefGoogle ScholarPubMed
Ferriero, D. M., Holtzman, D. M., Black, S. M., et al. (1996). Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiology of Disease, 3, 64–71.CrossRefGoogle ScholarPubMed
Follett, P. L., Deng, W., Dai, W., et al. (2004). Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. Journal of Neuroscience, 24, 4412–20.CrossRefGoogle ScholarPubMed
Foster-Barber, A., Dickens, B., & Ferriero, D. (2001). Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Developmental Neuroscience, 23, 213–18.CrossRefGoogle ScholarPubMed
Geddes, R., Vannucci, R. C., & Vannucci, S. J. (2001). Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat. Develomental Neuroscience, 23, 180–5.CrossRefGoogle ScholarPubMed
Gelbard, H. A., Dzenko, K. A., DiLoeto, D., et al. (1993). Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for AIDS neuropathogenesis. Developmental Neuroscience, 15, 417–22.CrossRefGoogle ScholarPubMed
Gibson, M. E., Han, B. H., Choi, J., et al. (2001). BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Molecular Medicine, 7, 644–55.Google ScholarPubMed
Gill, R., Soriano, M., Blomgren, K., et al. (2002). Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. Journal of Cerebral Blood Flow and Metabolism, 22, 420–30.CrossRefGoogle ScholarPubMed
Gilland, E. & Hagberg, H. (1996). NMDA receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat. Journal of Cerebral Blood Flow and Metabolism, 16, 1005–13.CrossRefGoogle ScholarPubMed
Gilland, E., Puka-Sundvall, M., Hillered, L., et al. (1998a). Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. Journal of Cerebral Blood Flow and Metabolism, 18, 297–304.CrossRefGoogle ScholarPubMed
Gilland, E., Bona, E., & Hagberg, H. (1998b). Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. Journal of Cerebral Blood Flow and Metabolism, 18, 222–8.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Wyatt, J. S., Azzopardi, D., et al. (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet, 365, 663–70.CrossRefGoogle ScholarPubMed
Graham, E. M, Sheldon, R. A., Flock, D. L, et al. (2004). Neonatal mice lacking functional Fas death receptor are resistant to hypoxic stress. Neurobiological Disorders, 88, 1122–4.Google Scholar
Green, D. R. & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305, 626–9.CrossRefGoogle ScholarPubMed
Grether, J. K. & Nelson, K. B. (1997). Maternal infection and cerebral palsy in infants of normal birth weight. JAMA: The Journal of American Medical Association, 278, 207–11.CrossRefGoogle ScholarPubMed
Hagan, P., Poole, S., Bristow, A. F., et al. (1996). Intracerebral NMDA injection stimulates production of interleukin-1 beta in perinatal rat brain. Journal of Neurochemistry, 67, 2215–18.CrossRefGoogle ScholarPubMed
Hagberg, H. & Mallard, C. (2005). Effect of inflammation on central nervous system development and vulnerability. Current Opinions in Neurology, 18, 117–23.CrossRefGoogle ScholarPubMed
Hagberg, H., Andersson, P., Kjellmer, I., et al. (1987). Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Neuroscience Letters, 78, 311–17.CrossRefGoogle ScholarPubMed
Hagberg, H., Thornberg, E., Blennow, M., et al. (1993). Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy. Acta Paediatrica, 82, 925–9.CrossRefGoogle ScholarPubMed
Hagberg, H., Gilland, E., Diemer, N. H., et al. (1994). Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and non-NMDA receptor antagonists. Biology of the Neonate, 66, 206–13.Google ScholarPubMed
Hagberg, H., Gilland, E., Bona, E., et al. (1996). Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatric Research, 40, 603–9.CrossRefGoogle ScholarPubMed
Hagberg, H., Wilson, M. A., Matsushita, H., et al. (2004). PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. Journal of Neurochemistry, 90, 1068–75.CrossRefGoogle ScholarPubMed
Hall, E. D. (1995). Inhibition of lipid peroxidation in central nervous system trauma and ischemia. Journal of the Neurological Sciences, 134, 79–83.CrossRefGoogle ScholarPubMed
Hallin, U., Kondo, E., Ozaki, Y., et al. (2006). Bcl-2 phosphorylation in the BH4 domain precedes caspase-3 activation and cell death after neonatal cerebral hypoxic-ischemic injury. Neurobiological Disorders, 21, 478–86.Google ScholarPubMed
Halliwell, B. (1992). Reactive oxygen species and central nervous system. Journal of Neurochemistry, 59, 1609–23.CrossRefGoogle ScholarPubMed
Hamada, Y., Hayakawa, T., Hattori, H., et al. (1994). Inhibitor of nitric oxide synthesis reduces hypoxic-ischemic brain damage in the neonatal rat. Pediatric Research, 35, 10–14.CrossRefGoogle ScholarPubMed
Hanrahan, D., Sargentoni, J., Azzopardi, D., et al. (1996). Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatric Research, 39, 584–90.CrossRefGoogle ScholarPubMed
Hanrahan, D., Cox, I. J., Edwards, A. D., et al. (1998). Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatric Research, 44, 304–11.CrossRefGoogle ScholarPubMed
Hanrahan, D., Cox, I. J., Azzopardi, D., et al. (1999). Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at one year of age. Developmental Medicine and Child Neurology, 41, 76–82.CrossRefGoogle ScholarPubMed
Hasegawa, K., Yoshioka, H., Sawada, T., et al. (1991). Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia. Brain Development, 13, 101–3.CrossRefGoogle ScholarPubMed
Hasegawa, K., Yoshioka, H., Sawada, T., et al. (1993). Direct measurement of free radicals in the neonatal mouse brain subjected to hypoxia: an electron spin resonance spectroscopic study. Brain Research, 607, 161–6.CrossRefGoogle Scholar
Hedtjärn, M., Leverin, A. L., Erikson, K., et al. (2002). Interleukin-18 involvement in hypoxic-ischemic brain injury. Journal of Neuroscience, 22, 5910–19.CrossRefGoogle ScholarPubMed
Hedtjärn, M., Mallard, C., & Hagberg, H. (2004). Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. Journal of Cerebral Flow and Metabolism, 24, 1333–51.CrossRefGoogle ScholarPubMed
Hope, P. L., Costello, A. M., Cady, E. B., et al. (1984). Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet, 2, 66–370.Google ScholarPubMed
Hu, B. R., Liu, C. L., Ouyang, Y., et al. (2000). Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. Journal of Cerebral Flow and Metabolism, 20, 1294–300.CrossRefGoogle ScholarPubMed
Hua, F., Ma, J., Ha, T., et al. (2007). Activation of toll-like receptor 4 signalling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology, 190, 101–11.CrossRefGoogle Scholar
Huang, Z., Huang, P. L., Panahian, N., et al. (1994). Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science, 265, 1883–5.CrossRefGoogle ScholarPubMed
Iadecola, C. & Ross, M. E. (1997). Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Annals of the New York Academy of Sciences, 835, 203–17.CrossRefGoogle ScholarPubMed
Ikonomidou, C., Bosch, F., Miksa, M., et al. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 283, 70–4.CrossRefGoogle ScholarPubMed
Ivacko, J. A., Sun, R., & Silverstein, F. S. (1996). Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatric Research, 39, 39–47.CrossRefGoogle ScholarPubMed
Ivacko, J., Szaflarski, J., Malinak, C., et al. (1997). Hypoxic-ischemic injury induces monocyte chemoattractant protein-1 expression in neonatal rat brain. Journal of Cerebral Flow and Metabolism, 17, 759–70.CrossRefGoogle ScholarPubMed
Jaffrey, S. R. & Snyder, S. H. (1995). Nitric oxide: a neural messenger. Annual Review of Cell and Developmental Biology, 11, 417–40.CrossRefGoogle ScholarPubMed
Joashi, U., Greenwood, K., Taylor, D. L., et al. (1999). Poly(ADP ribose) polymerase cleavage precedes neuronal death in the hippocampus and cerebellum following injury to the developing rat forebrain. European Journal of Neuroscience, 11, 91–100.CrossRefGoogle ScholarPubMed
Johnston, M. V. (2005). Excitotoxicity in perinatal brain injury. Brain Pathology, 15, 234–40.CrossRefGoogle ScholarPubMed
Joly, L. M., Mucignat, V., Mariani, J., et al. (2004). Caspase inhibition after neonatal ischemia in the rat brain. Journal of Cerebral Flow and Metabolism, 24, 124–31.CrossRefGoogle ScholarPubMed
Kadhim, H., Tabarki, B., Verellen, G., et al. (2001). Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology, 56, 1278–84.CrossRefGoogle ScholarPubMed
Kakizawa, H., Matsui, F., Tokita, Y., et al. (2007). Neuroprotective effect of nipradilol, an NO donor, on hypoxic-ischemic brain injury of neonatal rats. Early Human Development, 83, 535–40.CrossRefGoogle ScholarPubMed
Khan, S., Kayahara, M., Joashi, U., et al. (1997). Differential induction of apoptosis in Swiss 3T3 cells by nitric oxide and the nitrosonium cation. Journal of Cell Science, 110, 2315–22.Google ScholarPubMed
Kinney, H. C. & Back, S. A. (1998). Human oligodendroglial development: relationship to periventricular leukomalacia. Seminars in Pediatric Neurology, 5, 180–9.CrossRefGoogle ScholarPubMed
Kjellmer, I., Andiné, P., Hagberg, H., et al. (1989). Extracellular increase of hypoxanthine and xanthine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Brain Research, 478, 241–7.CrossRefGoogle ScholarPubMed
Kochanek, P. M. & Hallenbeck, J. M. (1992). Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke, 23, 1367–79.CrossRefGoogle ScholarPubMed
Kuan, C. Y., Whitmarsh, A. J., Yang, D. D., et al. (2003). A critical role of neural-specific JNK3 for ischemic apoptosis. Proceeding of the National Academy of Science of the U S A, 100, 15184–9.CrossRefGoogle ScholarPubMed
Kuida, K., Zheng, T. S., Na, S., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–72.CrossRefGoogle ScholarPubMed
Kumral, A., Baskin, H., Gokmen, N., et al. (2004). Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin?Biologly of the Neonate, 85, 51–4.CrossRefGoogle ScholarPubMed
Lavine, S. D., Hofman, F. M., & Zlokovic, B. V. (1998). Circulating antibody against tumor necrosis factor-alpha protects rat brain from reperfusion injury. Journal of Cerebral Blood Flow and Metabolism, 18, 52–8.CrossRefGoogle ScholarPubMed
Lawson, L. J. & Perry, V. H. (1995). The unique characteristics of inflammatory responses in mouse brain are acquired during postnatal development. European Journal of Neuroscience, 7, 1584–95.CrossRefGoogle ScholarPubMed
Leist, M. & Nicotera, P. (1998). Apoptosis, excitotoxicity, and neuropathology. Experimental Cell Research, 239, 83–201.CrossRefGoogle ScholarPubMed
Leist, M., Single, B., Kunstle, G., et al. (1997). Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochemical Biophysical Research Communication, 233, 518–22.CrossRefGoogle ScholarPubMed
Liu, J., Marino, M. W., Wong, G., et al. (1998). TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nature Medicine, 4, 78–83.CrossRefGoogle ScholarPubMed
Loddick, S. A., Turnbull, A. V., & Rothwell, N. J. (1998). Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 176–9.CrossRefGoogle ScholarPubMed
Lorek, A., Takei, Y., Cady, E. B., et al. (1994). Delayed (“secondary”) cerebral energy failure following acute hypoxia-ischaemia in the newborn piglet: continuous 48-hour studies by 31P magnetic resonance spectroscopy. Pediatric Research, 36, 699–706.CrossRefGoogle Scholar
Lucas, D. R. & Newhouse, J. P. (1957). The toxic effect of sodium-l-glutamate on the inner layers of retina. Annals of American Ophthalmology, 58, 193.Google ScholarPubMed
Maragos, W. F. & Silverstein, F. S. (1994). Resistance to nitroprusside neurotoxicity in perinatal rat brain. Neuroscience Letters, 172, 80–4.CrossRefGoogle ScholarPubMed
Marks, K. A., Mallard, C., Roberts, I., et al. (1999). Nitric oxide synthase inhibition and delayed cerebral injury following severe cerebral ischemia in fetal sheep. Pediatric Research, 46, 8–13.CrossRefGoogle Scholar
Martin, D., Chinookoswong, N., & Miller, G. (1994). The interleukin-1 receptor antagonist (rhIL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia. Experimental Neurology, 130, 362–7.CrossRefGoogle Scholar
Martin, E., Buchli, R., Ritter, S., et al. (1996). Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatric Research, 40, 749–58.CrossRefGoogle ScholarPubMed
Martin, L. J., Al-Abdulla, N. A., Brambrink, A. M., et al. (1998). Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Research Bulletin, 46, 81–309.CrossRefGoogle ScholarPubMed
Martín-Ancel, A., García-Alix, A., Pascual-Salcedo, D., et al. (1997). Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics, 100, 789–94.CrossRefGoogle ScholarPubMed
Martínez-Sánchez, G. & Giuliani, A. (2007). Cellular redox status regulates hypoxia inducible factor-1 activity. Role in tumour development. Journal of Experimental and Clinical Cancer Research, 26, 39–50.Google ScholarPubMed
Maslinska, D., Laure-Kamionowski, M., & Maslinski, S. (2004). Toll-like receptors in rat brains injured by hypoxic-ischaemia or exposed to staphylococcal alpha-toxin. Folia Neuropathology, 42, 125–32.Google ScholarPubMed
Matsumiya, N., Koehler, R. C., Kirsch, J. R., et al. (1991). Conjugated superoxide dismutase reduces extent of caudate injury after transient focal ischemia in cats. Stroke, 22, 11983–2000.CrossRefGoogle ScholarPubMed
McDonald, J. W. & Johnston, M. W. (1990). Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews, 15, 41–70.CrossRefGoogle ScholarPubMed
McDonald, J. W., Silverstein, F. S., & Johnston, M. V. (1987). MK-801 protects the neonatal brain from hypoxic-ischemic damage. European Journal of Pharmacology, 140, 359–61.CrossRefGoogle ScholarPubMed
McDonald, J. W., Silverstein, F. S., & Johnston, M. V. (1988). Neurotoxicity of N-methyl-d-aspartate is markedly enhanced in developing rat central nervous system. Brain Research, 459, 200–3.CrossRefGoogle ScholarPubMed
McRae, A., Gilland, E., Bona, E., et al. (1995). Microglia activation after neonatal hypoxic-ischemia. Developmental Brain Research, 84, 245–52.CrossRefGoogle ScholarPubMed
Mehmet, H., Yue, X., Squier, M. V., et al. (1994). Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischaemia is related to the degree of high energy phosphate depletion during the insult. Neuroscience Letters, 181, 121–5.CrossRefGoogle ScholarPubMed
Merry, D. E., Veis, D. J., Hickey, W. F., et al. (1994). Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development, 120, 301–11.Google ScholarPubMed
Miller, R. J. (1987). Multiple calcium channels and neuronal function. Science, 235, 46–52.CrossRefGoogle ScholarPubMed
Miller, R. J. (1991). The control of neuronal Ca2+ homeostasis. Progress in Neurobiology 37, 255–85.CrossRefGoogle ScholarPubMed
Miura, S., Ishida, A., Nakajima, W., et al. (2006). Intraventricular ascorbic acid administration decreases hypoxic-ischemic brain injury in newborn rats. Brain Research, 1095, 159–66.CrossRefGoogle ScholarPubMed
Nath, R., Raser, K. J., Stafford, D., et al. (1996). Non-erythroid a-spectrin breakdown by calpain and interleukin-1β-converting-enzyme.like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochemical Journal, 319, 683–90.CrossRefGoogle Scholar
Nawashiro, H., Martin, D., & Hallenbeck, J. M., (1997). Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. Journal of Cerebral Blood Flow and Metabolism, 17, 229–32.CrossRefGoogle ScholarPubMed
Nelson, K. B., Dambrosia, J. M., Grether, J. K., et al. (1998). Neonatal cytokines and coagulation factors in children with cerebral palsy. Annals of Neurology, 44, 665–75.CrossRefGoogle ScholarPubMed
Noor, J. L., Ikeda, T., Ueda, Y., et al. (2005). A free radical scavenger, edaravone, inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats. American Journal of Obstetrics and Gynecololgy, 193, 1703–10.CrossRefGoogle ScholarPubMed
Northington, F. J., Ferriero, D. M., Flock, D. L., et al. (2001). Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. Journal of Neuroscience, 21, 1931–8.CrossRefGoogle ScholarPubMed
Northington, F. J., Zelaya, M. E., O'Riordan, D. P., et al. (2007). Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience, 149, 822–33.CrossRefGoogle ScholarPubMed
Nurmi, A., Goldsteins, G., Närväinen, J., et al. (2006). Antioxidant pyrrolidine dithiocarbamate activates Akt-GSK signaling and is neuroprotective in neonatal hypoxia-ischemia. Free Radical Biology in Medicine, 40, 1776–84.CrossRefGoogle ScholarPubMed
Olney, J. W. & Ho, O. L. (1970). Brain damage in infant mice following oral intake of glutamate, aspartate and cysteine. Nature, 227, 609–11.CrossRefGoogle ScholarPubMed
Ostwald, K., Hagberg, H., Andiné, P., et al. (1993). Upregulation of calpain activity in neonatal rat brain after hypoxic-ischemia. Brain Research, 630, 289–94.CrossRefGoogle ScholarPubMed
Ota, K., Yakovlev, A. G., Itaya, A., et al. (2002). Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. Journal of Biochemistry (Tokyo), 131, 131–5.CrossRefGoogle ScholarPubMed
Oygür, N., Sönmez, O., Saka, O., et al. (1998). Predictive value of plasma and cerebrospinal fluid tumor necrosis factor-α and interleukin-1β concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Archives of Disease in Childhood Fetal and Neonatal Edition, 79, F190–3.CrossRefGoogle Scholar
Palmer, C. (1995). Hypoxic-ischemic encephalopathy. Therapeutic approaches against microvascular injury, and role of neutrophils, PAF, and free radicals. Clinical Perinatology, 22, 481–517.CrossRefGoogle ScholarPubMed
Palmer, C., Brucklacher, R. M., Christensen, M. A., et al. (1990). Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Journal of Cerebral Blood Flow and Metabolism, 10, 227–35.CrossRefGoogle ScholarPubMed
Palmer, C., Towfighi, J., Roberts, R., et al. (1993). Allopurinol administered after inducing hypoxic-ischemia reduces brain injury in 7-day-old rats. Pediatric Research, 33, 405–11.Google Scholar
Palmer, C., Roberts, R. L., & Bero, C. (1994). Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke, 25, 1039–45.CrossRefGoogle ScholarPubMed
Pang, Y., Cai, Z., & Rhodes, P. G. (2003). Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Research Developmental Brain Research, 140, 205–14.CrossRefGoogle ScholarPubMed
Parsadanian, A. S., Cheng, Y., Keller-Peck, C. R., et al. (1998). Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. Journal of Neuroscience, 18, 1009–19.CrossRefGoogle ScholarPubMed
Paterson, H. M., Murphy, T. J., Purcell, E. J., et al. (2003). Injury primes the innate immune system for enhanced Toll-like receptor reactivity. Journal of Immunology, 171, 1473–83.CrossRefGoogle ScholarPubMed
Penrice, J., Cady, E., Lorek, A., et al. (1996). Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischaemia. Pediatrics Research, 40, 6–14.CrossRefGoogle Scholar
Perlman, J. M. (2006). Intervention strategies for neonatal hypoxic-ischemic cerebral injury. Clinical Therapy, 28, 1353–65.CrossRefGoogle ScholarPubMed
Perry, V. H., Bell, M. D., Brown, H. C., et al. (1995). Inflammation in the nervous system. Current Opinion in Neurobiology, 5, 636–41.CrossRefGoogle Scholar
Pirianov, G., Brywe, K. G., Mallard, C., et al. (2007). Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. Journal of Cerebral Blood Flow and Metabolism, 27, 1022–32.CrossRefGoogle ScholarPubMed
Portera-Cailliau, C., Price, D. L., & Martin, L. J. (1997). Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. Journal of Comparative Neurology, 378, 88–104.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Puka-Sundvall, M., Gajkowska, B., Cholewinski, M., et al. (2000). Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Developmental Brain Research, 125, 31–41.CrossRefGoogle ScholarPubMed
Puka-Sundvall, M., Gilland, E., & Hagberg, H. (2001). Cerebral hypoxia-ischemia in immature rats: involvement of mitochondrial permeability transition?Developmental Neuroscience, 23, 192–7.CrossRefGoogle ScholarPubMed
Raff, M. C., Barres, B. A., Burne, J. F., et al. (1993). Programmed cell death and the control of cell survival: lessons from the nervous system. Science, 262, 695–700.CrossRefGoogle Scholar
Robbins, D. S., Shirazi, Y., Drysdale, B. E., et al. (1987). Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. Journal of Immunology, 139, 2593–7.Google ScholarPubMed
Robertson, N. J., Cox, I. J., Cowan, F. M., et al. (1999). Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatric Research, 46, 287–97.CrossRefGoogle ScholarPubMed
Rodrigo, J., Fernández, A. P., Serrano, J., et al. (2005). The role of free radicals in cerebral hypoxia and ischemia. Free Radicals in Biology and Medicine, 39, 26–50.CrossRefGoogle ScholarPubMed
Romanko, M. J., Zhu, C., Bahr, B. A., et al. (2007). Death effector activation in the subventricular zone subsequent to perinatal hypoxia/ischemia. Journal of Neurochemistry, 103, 1121–31.CrossRefGoogle ScholarPubMed
Rosenberg, A. A., Murdaugh, E., & White, C. W. (1989). The role of oxygen free radicals in postasphyxia cerebral hypoperfusion in newborn lambs. Pediatric Research, 26, 215–19.CrossRefGoogle ScholarPubMed
Roth, S. C., Baudin, J., Cady, E., et al. (1997). Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years. Developmental Medicine and Child Neurology, 39, 718–25.CrossRefGoogle ScholarPubMed
Rutherford, M. A., Pennock, J., Counsell, S., et al. (1998). Abnormal magnetic resonance signal in the internal capsule predicts poor outcome in infants with hypoxic-ischaemic encephalopathy. Pediatrics, 102, 323–28.CrossRefGoogle Scholar
Salter, M. G. & Fern, R. (2005). NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature, 438, 1167–71.CrossRefGoogle ScholarPubMed
Saugstad, O. D. (1996). Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. Acta Pediatrica, 85, 1–4.CrossRefGoogle ScholarPubMed
Scott, R. J. & Hegyi, L. (1997). Cell death in perinatal hypoxic-ischaemic brain injury. Neuropathology and Applied Neurobiology, 23, 307–14.CrossRefGoogle ScholarPubMed
Selmaj, K. & Raine, C. S. (1988). Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Annals of Neurology, 23, 339–46.CrossRefGoogle ScholarPubMed
Shalak, L. F., Laptook, A. R., Jafri, H. S., et al. (2002). Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics, 110, 673–80.CrossRefGoogle ScholarPubMed
Shankaran, S., Laptook, A. R., Ehrenkranz, R. A., et al. (2005). Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. New England Journal of Medicine, 353, 1574–84.CrossRefGoogle ScholarPubMed
Shohami, E., Bass, R., Wallach, D., et al. (1996). Inhibition of tumor necrosis factor alpha (TNFα) activity in rat brain is associated with cerebroprotection after closed head injury. Journal of Cerebral Blood Flow and Metabolism, 16, 378–84.CrossRefGoogle ScholarPubMed
Siesjö, B. K. (1986). Calcium and ischemic brain damage. European Neurology, 25, 45–56.CrossRefGoogle ScholarPubMed
Silveira, R. C. & Procianoy, R. S. (2003). Interleukin 6 and tumor necrosis factor α levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic-ischemic encephalopathy. Journal of Pediatrics, 143, 625–9.CrossRefGoogle ScholarPubMed
Silver, I. A. & Erecinska, M. (1990). Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. Journal of General Physiology, 95, 837–66.CrossRefGoogle ScholarPubMed
Silverstein, F., Torke, L., Barks, J., et al. (1986). Hypoxia–ischemia produces focal disruption of glutamate receptors in developing brain. Developmental Brain Research, 34, 33–9.CrossRefGoogle Scholar
Stein, D. T. & Vannucci, R. C. (1988). Calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Journal of Cerebral Blood Flow and Metabolism, 8, 834–42.CrossRefGoogle ScholarPubMed
Susin, S. A., Lorenzo, H. K., Zamzami, N., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–6.CrossRefGoogle ScholarPubMed
Szaflarski, J., Burtrum, D., & Silverstein, F. S. (1995). Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke, 26, 1093–100.CrossRefGoogle ScholarPubMed
Szaflarski, J., Ivacko, J., Liu, X. H., et al. (1998). Excitotoxic injury induces monocyte chemoattractant protein-1 expression in neonatal rat brain. Molecular Brain Research, 55, 306–14.CrossRefGoogle ScholarPubMed
Takita, M., Puka-Sundvall, M., Miyakawa, A., et al. (2004). In vivo calcium imaging of cerebral cortex in hypoxia-ischemia followed by developmental stage-specific injury in rats. Neuroscience Research, 48, 169–73.CrossRefGoogle ScholarPubMed
Tan, W. K. M., Williams, C. E., During, M. J., et al. (1996). Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep. Pediatric Research, 39, 791–7.CrossRefGoogle ScholarPubMed
Taylor, D. L., Mehmet, H., Cady, E. B., et al. (2002). Improved neuroprotection with hypothermia delayed by 6 hours following cerebral hypoxia-ischaemia in the 14-day-old rat. Pediatric Research, 51, 13–19.CrossRefGoogle ScholarPubMed
Taylor, D. L., Jones, F., Chen Seho Kubota, E. S. F., et al. (2005). Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers TNFα-induced neurotoxicity in concert with microglial derived FasL. Journal of Neuroscience, 25, 2952–64.CrossRefGoogle Scholar
Taylor, D. L., Joashi, U. C., Sarraf, C., et al. (2006). Consequential apoptosis in the cerebellum following injury to the developing rat forebrain. Brain Pathology, 16, 198–201.CrossRefGoogle ScholarPubMed
Thomson, A. W. (1998). The Cytokine Handbook. San Diego, CA: Academic Press.Google Scholar
Thoresen, M. & Wyatt, J. (1997). Keeping a cool head, post-hypoxic hypothermia – an old idea revisited. Acta Paediatrica, 86, 1029–33.CrossRefGoogle Scholar
Thoresen, M., Satas, S., Puka-Sundvall, M., et al. (1997). Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport, 8, 3359–62.CrossRefGoogle ScholarPubMed
Thornton, J. S., Ordidge, R. J., Penrice, J., et al. (1998). Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral hypoxic-ischemic injury: relationships to cerebral energy metabolism. Magnetic Resonance in Medicine, 39, 920–7.CrossRefGoogle ScholarPubMed
Trifiletti, R. (1992). Neuroprotective effects of NG-nitro-l-arginine in focal stroke in the 7-day old rat. European Journal of Pharmacology, 218, 197–8.CrossRefGoogle ScholarPubMed
Tütüncüler, F., Eskiocak, S., Başaran, U. N., et al. (2005). The protective role of melatonin in experimental hypoxic brain damage. Pediatrics International, 47, 434–9.CrossRefGoogle ScholarPubMed
Vila, N., Castillo, J., Dávalos, A., et al. (2000). Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke, 31, 2325–9.CrossRefGoogle ScholarPubMed
Volpe, J. J. (1994). Hypoxic-ischemic encephalopathy: neuropathology and pathogenesis. In Neurology of the Newborn, ed., Volpe, J. J.. Philadelphia, PA: W. B. Saunders, pp. 279–314.Google Scholar
Wang, X., Karlsson, J. O., Zhu, C., et al. (2001). Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biology of the Neonate, 79, 172–9.Google ScholarPubMed
Wang, X., Zhu, C., Hagberg, H., et al. (2004). X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia. Neurobiology of Disease, 16, 179–89.CrossRefGoogle ScholarPubMed
Xia, W. J., Yang, M., Fok, T. F., et al. (2005). Partial neuroprotective effect of pretreatment with tanshinone IIA on neonatal hypoxia-ischemia brain damage. Pediatric Research, 58, 784–90.CrossRefGoogle ScholarPubMed
Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., et al. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 389, 865–70.CrossRefGoogle ScholarPubMed
Yang, L., Sameshima, H., Ikeda, T., et al. (2004). Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. Journal of Obstetrics and Gynaecology Research, 30, 142–7.CrossRefGoogle ScholarPubMed
Yoon, B. H., Romero, R., Kim, C. J., et al. (1997). High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. American Journal of Obstetrics and Gynecology, 177, 406–11.CrossRefGoogle ScholarPubMed
Yuan, H. B., Huang, Y., Zheng, S., et al. (2006). Hypothermic preconditioning reduces Purkinje cell death possibly by preventing the over-expression of inducible nitric oxide synthase in rat cerebellar slices after an in vitro simulated ischemia. Neuroscience, 142, 381–9.CrossRefGoogle ScholarPubMed
Zhu, C., Wang, X., Hagberg, H., et al. (2000). Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. Journal of Neurochemistry, 75, 819–29.CrossRefGoogle ScholarPubMed
Zhu, C., Qiu, L., Wang, X., et al. (2003). Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. Journal of Neurochemistry, 86, 306–17.CrossRefGoogle ScholarPubMed
Zhu, C., Wang, X., Xu, F., et al. (2005). The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death and Differentiation, 12, 162–76.CrossRefGoogle ScholarPubMed
Zhu, C., Wang, X., Huang, Z., et al. (2007a). Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death and Differentiation, 14, 775–84.CrossRefGoogle ScholarPubMed
Zhu, C., Wang, X., Deinum, J., et al. (2007b). Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. Journal of Experimental Medicine, 204, 1741–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×