Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T03:57:57.238Z Has data issue: false hasContentIssue false

6 - Structure-property relations

Published online by Cambridge University Press:  06 January 2010

C. N. R. Rao
Affiliation:
Indian Institute of Science, Bangalore
J. Gopalakrishnan
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Introduction

Relating properties of substances to their structures has been a major objective of modern chemistry and this also happens to be a prime concern of solid state chemists. Some of the aspects of importance in solid state chemistry are electronic, magnetic, superconducting, dielectric and optical properties. We shall briefly discuss these properties and present highlights in the solid state chemistry of some interesting classes of materials. An important class of materials is that of ferroics, which possess several orientation states that can be switched from one to another by the application of an appropriate force; ferroelectric materials form a subgroup of this class of materials. Other classes of materials discussed are amorphous solids, mixed-valence compounds, low-dimensional solids and liquid crystals which are of considerable importance. We have also devoted attention to different types of metal-nonmetal transitions and have briefly examined the question, ‘what makes a metal?’. While a detailed discussion of the theory of electronic structure would be outside the scope of the book, we have presented the necessary background material at an elementary level and discussed some of the typical results obtained from empirical theory as well as electron spectroscopy.

Electrons in solids

In order to correlate the structure and physical properties of solids, it is essential to have a description of valence electrons that bind the atoms in the solid state. Two limiting descriptions of atomic outer electrons in solids are available: the band theory and the localized-electron theory or the ligand-field theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×