Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T22:40:51.552Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Jonathan Borwein
Affiliation:
University of Newcastle, New South Wales
Alf van der Poorten
Affiliation:
Macquarie University, Sydney
Jeffrey Shallit
Affiliation:
University of Waterloo, Ontario
Wadim Zudilin
Affiliation:
University of Newcastle, New South Wales
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Neverending Fractions
An Introduction to Continued Fractions
, pp. 200 - 208
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] B., Adamczewski and Y., Bugeaud, On the Maillet-Baker continued fractions, J. Reine Angew. Math. 606 (2007), 105–121.Google Scholar
[2] W. W., Adams and J. L., Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194–198.Google Scholar
[3] W. W., Adams and M. J., Razar, Multiples of points on elliptic curves and continued fractions, Proc. London Math. Soc. 41 (1980), 481–498.Google Scholar
[4] G., Almkvist and W., Zudilin, Differential equations, mirror maps and zeta values, in: Mirror symmetry y, AMS/IP Stud. Adv. Math. 38 (Amer. Math. Soc., Providence, RI, 2006), pp. 481–515.Google Scholar
[5] G., Andrews and B. C., Berndt, Ramanujan's lost notebook, Parts I, II, II, IV (Springer, New York, 2005, 2009, 2012, 2013).Google Scholar
[6] G. E., Andrews, B. C., Berndt, L., Jacobsen and R. L., Lamphere, The continued fractions found in the unorganized portions of Ramanujan's notebooks, Mem. Amer. Math. Soc. 99 (Amer. Math. Soc., Providence, RI, 1992), no. 477.Google Scholar
[7] F., Apéry, Roger Apéry, 1916-1994: a radical mathematician, Math. Intelligencer 18 (1996), no. 2, 54–61.Google Scholar
[8] R., Apéry, Irrationalité de ζ(2) et ζ(3), Journées arithmétiques de Luminy (20-24 June 1978), Asterisque 61 (Soc. Math.France, Paris, 1979), 11–13.Google Scholar
[9] D. H., Bailey, J. M., Borwein and R. H., Crandall, On the Khintchine constant, Math. Comp. 66 (1997), 417–431.Google Scholar
[10] A., Baker, A concise introduction to the theory of numbers (Cambridge University Press, Cambridge, 1984).Google Scholar
[11] J., Barát and P. P., Varjú, Partitioning the positive integers to seven Beatty sequences, Indag. Math. (NS) 14 (2003), 149–161.Google Scholar
[12] A. F., Beardon and I., Short, The Seidel, Stern, Stolz and Van Vleck theorems on continued fractions, Bull. London Math. Soc. 42 (2010), 457–466.Google Scholar
[13] B. C., Berndt, Ramanujan's notebooks, Parts I, II, III, IV, V (Springer-Verlag, New York, 1985, 1989, 1991, 1994, 1998).Google Scholar
[14] T. G., Berry, On periodicity of continued fractions in hyperelliptic function fields, Arch. Math. (Basel) 55 (1990), 259–266.Google Scholar
[15] M. R., Best and H. J. J., te Riele, On a conjecture of Erdős concerning sums of powers of integers, Report NW 23/76 (Mathematisch Centrum Amsterdam, 1976).Google Scholar
[16] F., Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc. 11 (1979), 268–272.Google Scholar
[17] P. E., Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367–377; Erratum, Math. Ann. 96 (1927), 735.Google Scholar
[18] E., Bombieri and A. J., van der Poorten, Continued fractions of algebraic numbers, in: Computational algebra and number theory, Sydney, 1992, Math. Appl. 325 (Kluwer, Dordrecht, 1995), pp. 137–152.Google Scholar
[19] D., Borwein, J., Borwein, R., Crandall and R., Mayer, On the dynamics of certain recurrence relations, Ramanujan J. 13 (2007), 63–101.Google Scholar
[20] D., Borwein, J. M., Borwein and B., Sims, On the solution of linear mean recurrences, Amer. Math. Monthly (2014), in press.Google Scholar
[21] J., Borwein and D., Bailey, Mathematics by experiment. Plausible reasoning in the 21st century, 2nd edition (A. K. Peters, Wellesley, MA, 2008).Google Scholar
[22] J. M., Borwein, D., Bailey and R., Girgensohn, Experimentation in mathematics: computational paths to discovery (A. K. Peters, Natick, MA, 2004).Google Scholar
[23] J., Borwein and P., Borwein, On the generating function of the integer part: [na + γ], J. Number Theory 43 (1993), no. 3, 293–318.Google Scholar
[24] J., Borwein, P., Borwein and K., Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly 96 (1989), 681–687.Google Scholar
[25] J. M., Borwein, K.-K. S., Choi and W., Pigulla, Continued fractions of tails of hypergeometric series, Amer. Math. Monthly 112 (2005), 493–501.Google Scholar
[26] J., Borwein, R., Crandall and G., Fee, On the Ramanujan AGM fraction. Part I: the real-parameter case, Exp. Math. 13 (2004), 275–286.Google Scholar
[27] J., Borwein and R., Crandall, On the Ramanujan AGM fraction. Part I: the complex-parameter case, Exp. Math. 13 (2004), 287–296.Google Scholar
[28] J. M., Borwein and P., Borwein, Pi and the AGM: a study in analytic number theory and computational complexity (John Wiley, New York, 1987).Google Scholar
[29] J., Borwein and R., Luke, Dynamics of a Ramanujan-type continued fraction with cyclic coefficients, Ramanujan J. 16 (2008), 285–304.Google Scholar
[30] J., Borwein and R., Luke, Dynamics of some random continued fractions, Abstract Appl. Anal. 5 (2005), 449–468.Google Scholar
[31] J. M., Borwein, I., Shparlinski and W., Zudilin (eds.), Number theory and related fields: in memory of Alf van der Poorten, Springer Proc. Math. and Stat. 43 (Springer-Verlag, New York, 2013).
[32] P., Borwein, S., Choi, B., Rooney and A., Weirathmueller, The Riemann hypothesis: a resource for the afficionado and virtuoso alike, CMS Books in Math. (Springer-Verlag, New York, 2007).Google Scholar
[33] J., Bourgain and A., Kontorovich, On Zaremba's conjecture, CR Math. Acad. Sci. Paris Ser. I Math. 349 (2011), 493–495.Google Scholar
[34] D., Bowman, A new generalization of Davison's theorem, Fibonacci Quart. 26 (1988), 40–45.Google Scholar
[35] R. P., Brent, A. J., van der Poorten and H. TE, Riele, A comparative study of algorithms for computing continued fractions of algebraic numbers, in: Algorithmic number theory (Talence, 1996), Lecture Notes in Computer Sci. 1122 (Springer, Berlin, 1996), pp. 35–47.Google Scholar
[36] E. B., Burger, Exploring the number jungle: a journey into Diophantine analysis, Student Math. Library 8 (Amer. Math. Soc., Providence, RI, 2000).Google Scholar
[37] E. B., Burger and T., Struppeck, On frequency distributions of partial quotients of U-numbers, Mathematika 40 (1993), 215–225.Google Scholar
[38] W., Butske, L. M., Jaje and D. R., Mayernik, On the equation, pseudoperfect numbers, and perfectly weighted graphs, Math. Comp. 69 (2000), 407–420.Google Scholar
[39] G., Cairns, N. B., Ho and T., Lengyel, The Sprague-Gundy function of the real game Euclid, Discrete Math. 311 (2011), 457–462.Google Scholar
[40] D. G., Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987), no. 177, 95–101.Google Scholar
[41] D. G., Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. fur Math. (Crelle) 447 (1994), 91–145.Google Scholar
[42] D. G., Cantor, P. H., Galyean and H. G., Zimmer, A continued fraction algorithm for real algebraic numbers, Math. Comp. 26 (1972), 785–791.Google Scholar
[43] J. W. S., Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Phys. 45 (Cambridge University Press, New York, 1957).Google Scholar
[44] B. M., Char, On Stieltjes' continued fraction for the gamma function, Math. Comp. 34 (1980), 547–551.Google Scholar
[45] S. D., Chowla, Some problems of diophantine approximation (I), Math. Z. 33 (1931), 544–563.Google Scholar
[46] F. W., Clarke, W. N., Everitt, L. L., Littlejohn and S. J. R., Vorster, H. J. S., Smith and the Fermat two squares theorem, Amer. Math. Monthly 106 (1999), 652–665.
[47] H., Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly 113 (2006), 57–62.Google Scholar
[48] R. M., Corless, G. W., Frank and J. G., Monroe, Chaos and continued fractions, Phys. D 46 (1990), 241–253.Google Scholar
[49] T. W., Cusick and M. Mendes, France, The Lagrange spectrum of a set, Acta Arith. 34 (1979), 287–293.Google Scholar
[50] A., Cuyt, V. B., Petersen, B., Verdonk, H., Waadeland and W. B., Jones, Handbook of continued fractions for special functions, with contributions by F., Backeljauw and C., Bonan-Hamada (Springer, New York, 2008).Google Scholar
[51] D. P., Dalzell, On 22/7, J. London Math. Soc. 19 (1944), 133–134.Google Scholar
[52] L. V., Danilov, Some classes of transcendental numbers, Mat. Zametki 12 (1972), 149–154; English translation, Math. Notes Acad. Sci. USSR 12 (1972), 524-527.Google Scholar
[53] H., Davenport, A note on diophantine approximation (II), Mathematika 11 (1964), 50–58.Google Scholar
[54] C. S., Davis, A note on rational approximation, Bull. Austral. Math. Soc. 20 (1979), no. 3, 407–410.Google Scholar
[55] J. L., Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29–32.Google Scholar
[56] J. L., Davison and J. O., Shallit, Continued fractions for some alternating series, Monat shefte Math. 111 (1991), 119–126.Google Scholar
[57] P., Erdős, Advanced problem 4347, Amer. Math. Monthly 56 (1949), 343.Google Scholar
[58] S. R., Finch, Mathematical constants, Encyclopedia of Math. and its Applications 94 (Cambridge University Press, Cambridge, 2003).Google Scholar
[59] S., Fomin and A., Zelevinsky, The Laurent phenomenon, Adv. Appl. Math. 28 (2002), 119–144.Google Scholar
[60] L. R., Ford, Fractions, Amer. Math. Monthly 45 (1938), 586–601.Google Scholar
[61] A. S., Fraenkel, The bracket function and complementary sets of integers, Adv. Appl. Math. 28 (2002), 119–144.Google Scholar
[62] A. S., Fraenkel, Complementing and exactly covering sequences, J. Combin. Theory Ser. A 14 (1973), 8–20.Google Scholar
[63] J. S., Frame, Continued fractions and matrices, Amer. Math. Monthly 56 (1949), 98–103.Google Scholar
[64] J., Franel, Les suites de Farey et le problème des nombres premiers, Göttinger Nachrichten (1924), 198–201.Google Scholar
[65] Y., Gallot, P., Moree, and W., Zudilin, The Erdős–Moser equation 1k + 2k + … + (m - 1)k = mk revisited using continued fractions, Math. Comp. 80 (2011), no. 274, 1221–1237.Google Scholar
[66] A. O., Gelfond, Calculus of finite differences, International Monographs on Advanced Math. and Phys. (Hindustan Publishing, Delhi, 1971).Google Scholar
[67] R. L., Graham, Covering the positive integers by disjoint sets of the form {[nα + β]: n = 1, 2,…}, J. Combin. Theory Ser. A 15 (1973), 354–358.Google Scholar
[68] R. L., Graham, D. E., Knuth and O., Patashnik, Concrete mathematics (Addison-Wesley, Reading, MA, 1990).Google Scholar
[69] D. B., Grünberg and P., Moree, Sequences of enumerative geometry: congruences and asymptotics. With an appendix by Don Zagier, Exp. Math. 17 (2008), 409–426.Google Scholar
[70] R. K., Guy, Unsolved problems in number theory, 3rd edition, Problem Books in Math. (Springer, New York, 2004).Google Scholar
[71] D., Hanson, On the product of the primes, Can. Math. Bull. 15 (1972), 33–37.Google Scholar
[72] G. H., Hardy and E. M., Wright, An introduction to the theory of numbers, 5th edition (Oxford University Press, Oxford, 1989).Google Scholar
[73] H. A., Helfgott, Major arcs for Goldbach's theorem, Preprint arXiv: 1305.2897v2 [math. NT] (June 2013).Google Scholar
[74] M., Hirschhorn, Lord Brouncker's continued fraction for π, Math. Gazette 95 (2011), no. 533, 322–326.Google Scholar
[75] A. N. W., Hone, Elliptic curves and quadratic recurrence sequences, Bull. London Math. Soc. 37 (2005), 161–171.Google Scholar
[76] A., Hurwitz and N., Kritikos, Lectures on number theory (Springer-Verlag, Berlin, 1986).Google Scholar
[77] A. E., Ingham, The distribution of prime numbers, Reprint of the 1932 original, with a foreword by R. C., Vaughan, Cambridge Math. Library (Cambridge University Press, Cambridge, 1990).Google Scholar
[78] W. B., Jones and W. J., Thron, Continued fractions: analytic theory and applications, Encyclopedia of Math. and its Applications 11 (Addison-Wesley, Reading, MA, 1980).Google Scholar
[79] B. C., Kellner, Über irreguläre Paare höhere Ordnungen, Diplomarbeit (Math. Inst., Georg-August-Universität zu Göttingen, Germany, 2002); available at http://www. bernoulli.org/~bk/irrpairord.pdf.
[80] A., Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361–382.Google Scholar
[81] A., Khintchine, Zur metrischen Kettenbruchtheorie, Compositio Math. 3 (1936), 276–285.Google Scholar
[82] A. Ya., Khintchine, Continued fractions, 2nd edition, translated by P., Wynn (P. Noordhoff, Ltd., Groningen, 1963).Google Scholar
[83] D. E., Knuth, The art of computer programming, Vol. II: Seminumerical algorithms (Addison-Wesley, Reading, MA, 1981).Google Scholar
[84] K., Kolden, Continued fractions and linear substitutions, Archiv for Mathematik og Naturvidenskab 50 (1949), 141–196.Google Scholar
[85] T., Komatsu, A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory 59 (1996), 291–312.Google Scholar
[86] T., Komatsu, On inhomogeneous Diophantine approximation with some quasi-periodic expressions, Acta Math. Hungar. 85 (1999), 311–330.Google Scholar
[87] T., Komatsu, On inhomogeneous Diophantine approximation and the Borweins' algorithm, Far East J. Math. Sci. 12 (2004), 203–224.Google Scholar
[88] T., Komatsu, A proof of the continued fraction expansion of e2/s, Integers 7 (2007), no. A30.Google Scholar
[89] C., Krattenthaler, Advanced determinant calculus, in: The Andrews Festschrift (Maratea, 1998), Sém. Lothar. Combin. 42 (1999), Art. B42q, 67 pp.Google Scholar
[90] L., Kuipers and H., Niederreiter, Uniform distribution of sequences (Wiley-Interscience, New York, 1974).Google Scholar
[91] R. O., Kuzmin, On a problem of Gauss, Dokl. Acad. Sci. USSR (1928), 375–380.Google Scholar
[92] J. C., Lagarias and J., Shallit, Linear fractional transformations of continued fractions with bounded partial quotients, J. Théorie Nombres Bordeaux 9 (1997), 267–279; Corrigendum, J. Théorie Nombres Bordeaux 15 (2003), 741-743.Google Scholar
[93] E., Landau, Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Göttinger Nachrichten (1924), 198–206.Google Scholar
[94] S., Lang, Introduction to Diophantine approximations, 2nd edition (Springer-Verlag, New York, 1995).Google Scholar
[95] S., Lang and H., Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112–134; Addendum, J. Reine Angew. Math. 267 (1974), 219-220.Google Scholar
[96] D. H., Lehmer, Euclid's algorithm for large numbers, Amer. Math. Monthly 45 (1938), 227–233.Google Scholar
[97] P., Lévy, Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue, Bull. Soc. Math. France 57 (1929), 178–194.Google Scholar
[98] P., Lévy, Sur le développement en fraction continue d'un nombre choisi au hasard, Compositio Math. 3 (1936), 286–303.Google Scholar
[99] P., Liardet and P., Stambul, Algebraic computations with continued fractions, J. Number Theory 73 (1998), 92–121.Google Scholar
[100] F., Lindemann, Über die Zalh π, Math. Ann. 20 (1882), 213–225.Google Scholar
[101] G., Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Hamburg Univ. Math. Sem. 27 (1964), 142–144.Google Scholar
[102] L., Lorentzen, Convergence and divergence of the Ramanujan AGM fraction, Ramanujan J. 16 (2008), 83–95.Google Scholar
[103] L., Lorentzen and H., Waadelend, Continued fractions with applications (North Holland, 1992).Google Scholar
[104] J. H., Loxton and A. J., van der Poorten, Arithmetic properties of certain functions in several variables. III, Bull. Austral. Math. Soc. 16 (1977), 15–47.Google Scholar
[105] S. K., Lucas, Approximations to π derived from integrals with nonnegative integrands, Amer. Math. Monthly 116 (2009), 166–172.Google Scholar
[106] K., MacMillan and J., Sondow, Proofs of power sum and binomial coefficient congruences via Pascal's identity, Amer. Math. Monthly 118 (2011), 549–551.Google Scholar
[107] K., MacMillan and J., Sondow, Divisibility of power sums and the generalized Erdős–Moser equation, Elemente Math. 67 (2012), 182–186.Google Scholar
[108] K., Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342–366; Corrigendum, Math. Ann. 103 (1930), 532.Google Scholar
[109] E., Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions (Paris, Gauthier-Villars, 1906).Google Scholar
[110] R., Marcovecchio, The Rhin–Viola method for log 2, Acta Arith. 139 (2009), 147–184.Google Scholar
[111] J., McLaughlin, Symmetry and specializability in the continued fraction expansions of some infinite products, J. Number Theory 127 (2007), 184–219.Google Scholar
[112] N., Möller, On Schönhage's algorithm and subquadratic integer GCD computation, Math. Comp. 77 (2008), 589–607.Google Scholar
[113] P., Moree, Diophantine equations of Erdős–Moser type, Bull. Austral. Math. Soc. 53 (1996), 281–292.Google Scholar
[114] P., Moree, A top hat for Moser's four mathemagical rabbits, Amer. Math. Monthly 118 (2011), 364–370.Google Scholar
[115] P., Moree, H., te Riele and J., Urbanowicz, Divisibility properties of integers x, k satisfying 1k + … + (x - 1)k = xk, Math. Comp. 63 (1994), 799–815.Google Scholar
[116] L., Moser, On the diophantine equation 1n + 2n + 3n + … + (m - 1)n = mn, Scripta Math. 19 (1953), 84–88.Google Scholar
[117] H., Niederreiter, Dyadic fractions with small partial quotients, Monatshefte Math. 101 (1986), 309–315.Google Scholar
[118] Ku., Nishioka, Mahler functions and transcendence, Lecture Notes in Math. 1631 (Springer-Verlag, Berlin, 1996).Google Scholar
[119] Ku., Nishioka, I., Shiokawa and J., Tamura, Arithmetical properties of a certain power series, J. Number Theory 42 (1992), 61–87.Google Scholar
[120] I., Niven, A simple proof that π is irrational, Bull. Amer. Math. Soc. 53 (1947), 509.Google Scholar
[121] I., Niven, Irrational numbers, Carus Math. Monographs 11, Math. Assoc. Amer. (John Wiley, New York, NY, 1956).Google Scholar
[122] K., O'Bryant, A generating function technique for Beatty sequences and other step sequences, J. Number Theory 94 (2002), 299–319.Google Scholar
[123] F. W. J., Olver, D. W., Lozier, R. F., Boisvert and C. W., Clark (eds.), NISThandbook of mathematical functions (Cambridge University Press, New York, 2010).
[124] O., Perron, Uber die Approximation irrationaler Zahlen durch rationale, Sitz. Heidelberg. Akad. Wiss. 12A (1921), 3–17.Google Scholar
[125] O., Perron, Die Lehre von den Kettenbmchen, 3rd edition, Bd. I: Elementare Kettenbrüche (B. G. Teubner, Stuttgart, 1954); Bd. II: Analytisch-funktionentheoretische Kettenbrüche (B. G., Teubner, Stuttgart, 1957).Google Scholar
[126] M., Petkovšek, H. S., Wilf and D., Zeilberger, A = B (A. K. Peters, Wellesley, MA, 1996).Google Scholar
[127] A., van der Poorten, A proof that Euler missed… Apery's proof of the irrationality of ζ(3), Math. Intelligencer 1 (1978/1979), 195–203.Google Scholar
[128] A., van der Poorten, Formal power series and their continued fraction expansion, in: Algorithmic number theory, Lecture Notes in Computer Sci. 1423 (Springer-Verlag, Berlin, 1998), pp. 358–371.Google Scholar
[129] A., van der Poorten, Quadratic irrational integers with partly prescribed continued fraction expansion, Publ. Math. Debrecen 65 (2004), 481–496.Google Scholar
[130] A., van der Poorten, Specialisation and reduction of continued fraction expansions of formal power series, Ramanujan J. 9 (2005), 83–91.Google Scholar
[131] A., van der Poorten, Elliptic curves and continued fractions, J. Integer Sequences 8 (2005), paper 05.2.5, 19 pp.Google Scholar
[132] A., van der Poorten, Curves of genus 2, continued fractions, and Somos sequences, J. Integer Sequences 8 (2005), paper 05.3.4, 9 pp.Google Scholar
[133] A., van der Poorten, Hyperelliptic curves, continued fractions, and Somos sequences, in: Dynamics and stochastics, IMS Lecture Notes Monogr. Ser. 48 (Inst. Math. Statist., Beachwood, OH, 2006), pp. 212-224.Google Scholar
[134] A., van der Poorten and J., Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250.Google Scholar
[135] A., van der Poorten and J., Shallit, A specialised continued fraction, Can. J. Math. 45 (1993), 1067-1079.Google Scholar
[136] A. J., van der Poorten and C. S., Swart, Recurrence relations for elliptic sequences: every Somos 4 is a Somos k, Bull. London Math. Soc. 38 (2006), 546-554.Google Scholar
[137] M., Prévost, A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants, J. Comput. Appl. Math. 67 (1996), 219-235.Google Scholar
[138] K., Rajkumar, A simplification of Apéry's proof of the irrationality of ζ(3), Preprint arXiv: 1212.5881 [math. NT] (2012).
[139] G. N., Raney, On continued fractions and finite automata, Math. Ann. 206 (1973), 265-283.Google Scholar
[140] G., Rhin and C., Viola, On a permutation group related to ζ(2), Acta Arith. 77 (1996), 23-56.Google Scholar
[141] R. D., Richtmyer, M., Devaney and N., Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math. 4 (1962), 68-84.Google Scholar
[142] T., Rivoal and W., Zudilin, Diophantine properties of numbers related to Catalan's constant, Math. Ann. 326: 4 (2003), 705-721.Google Scholar
[143] J., Roberts, Elementary number theory: a problem oriented approach (MIT Press, 1978).Google Scholar
[144] A. M., Rockett and P., Szüsz, Continued fractions (World Scientific, Singapore, 1992).Google Scholar
[145] V. Kh., Salikhov, On the irrationality measure of π, Usp. Mat. Nauk. 63 (2008), no. 3, 163-164; English translation, Russian Math. Surveys 63 (2008), 570–572.Google Scholar
[146] A., Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1961), 393-413.Google Scholar
[147] A., Schinzel, On some problems of the arithmetical theory of continued fractions II, Acta Arith. 7 (1962), 287-298.Google Scholar
[148] W. M., Schmidt, On badly approximable numbers, Mathematika 12 (1965), 10-20.Google Scholar
[149] W. M., Schmidt, Diophantine approximation, Lecture Notes in Math. 785 (Springer-Verlag, Berlin, 1980).Google Scholar
[150] A., Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica 1 (1971), 139-144.Google Scholar
[151] J., Shallit, Real numbers with bounded partial quotients: a survey, L'Enseignement Math. 38 (1992), 151-187.Google Scholar
[152] R., Shipsey, Elliptic divisibility sequences, Ph. D. thesis (Goldsmiths College, University of London, 2000).Google Scholar
[153] P., Shiu, Computation of continued fractions without input values, Math. Comp. 64 (1995), no. 211, 1307-1317.Google Scholar
[154] P., Shiu, A function from Diophantine approximations, Publ. Inst. Math. (Beograd) 65 (1999), 52-62.Google Scholar
[155] Th., Skolem, Über einige Eigenschaften der Zahlenmengen [αn + β] bei irrationalem α mit einleitenden Bemerkungen über einige kombinatorische Probleme, Norske Vid. Selsk. Forh. (Trondheim) 30 (1957), 118-125.Google Scholar
[156] N. J. A., Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org/ (2013).Google Scholar
[157] K. R., Stromberg, An introduction to classical real analysis (Wadsworth, 1981).Google Scholar
[158] C., Swart, Elliptic curves and related sequences, Ph. D. thesis (Royal Holloway College, University of London, 2003).Google Scholar
[159] B. G., Tasoev, On rational approximations of some numbers, Math. Notes 67 (2000), no. 5–6, 786-791.Google Scholar
[160] R., Tijdeman, Exact covers of balanced sequences and Fraenkel's conjecture, in: Algebraic number theory and Diophantine analysis, Graz, 1998 (de Gruyter, Berlin, 2000), pp. 467-483.Google Scholar
[161] R., Tijdeman, Fraenkel's conjecture for six sequences, Discrete Math. 222 (2000), 223-234.Google Scholar
[162] A. J. H., Vincent, Sur la résolution des équations numériques, J. Math. Pures Appl. 1 (1836), 341-372.Google Scholar
[163] J., Vuillemin, Exact real computer arithmetic with continued fractions, INRIA Report 760 (INRIA, Le Chesnay, France, 1987).Google Scholar
[164] H. S., Wall, Analytic theory of continued fractions (Chelsea Publishing, New York, 1948).Google Scholar
[165] M., Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74.Google Scholar
[166] E. T., Whittaker and G. N., Watson, A course of modern analysis, 4th edition (Cambridge University Press, 1927).Google Scholar
[167] A. J., Yee, γ-cruncher – a multi-threaded pi-program, available at http://www.numberworld.org/.
[168] D. B., Zagier, Zetafunktionen und quadratische Körper (Springer-Verlag, New York–Berlin, 1981).Google Scholar
[169] D. B., Zagier, Problems posed at the St Andrews Colloquium (1996), Solutions, 5th day; http://www-groups.dcs.st-and.ac.uk/~john/Zagier/Problems.html.
[170] D., Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960.Google Scholar
[171] D., Zagier, Integral solutions of Apéry-like recurrence equations, in: Groups and symmetries, CRM Proc. Lecture Notes 47 (Amer. Math. Soc., Providence, RI, 2009), pp. 349-366.Google Scholar
[172] S. K., Zaremba, La méthode des ‘bons treillis’ pour le calcul des intégrales multiples, in: Applications of number theory to numerical analysis, Proc. Sympos., Université de Montréal, 1971 (Academic Press, New York, 1972), pp. 39-119.Google Scholar
[173] Y., Zhang, Bounded gaps between primes, Ann. Math. (2013), in press; http://annals.math.princeton.edu/articles/7954.Google Scholar
[174] W., Zudilin, Well-poised generation of Apéry-like recursions, J. Comput. Appl. Math. 178 (2005), 513-521.Google Scholar
[175] W., Zudilin, Apéry's theorem. Thirty years after, Intern. J. Math. Computer Sci. 4 (2009), 9-19; An elementary proof of Apéry's theorem, Preprint arXiv:math. NT/0202159 (2002).Google Scholar
[176] W., Zudilin, On the irrationality measure of π2, Usp. Mat. Nauk. 68 (2013), no. 6, 171-172; English translation, Russian Math. Surveys 68 (2013), 1133–1135; Two hypergeometric tales and a new irrationality measure of ζ(2), Preprint arXiv: 1310.1526 [math. NT] (2013).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×