Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T07:29:42.902Z Has data issue: false hasContentIssue false

Chapter 1 - Overview

from Section 1 - Essential Background Knowledge

Published online by Cambridge University Press:  25 October 2024

Simon Gerhand
Affiliation:
Hywel Dda Health Board, NHS Wales
Get access

Summary

This chapter provides an introduction to dementia and mild cognitive impairment (MCI). It covers the incidence and prevalence of the most common forms of dementia, and explains the underlying causes in terms of different types of proteinopathy. Risk factors for development of dementia are reviewed, along with protective factors. The role of age is also considered as different subtypes of dementia peak during different age ranges. The contribution of genetics and epigenetics is reviewed, along with the importance of blood supply, sleep, and inflammation. The theory of cognitive and neuronal reserve is introduced as one of the factors which can predict which people are more or less likely to develop dementia and MCI. Connectomics and the arrangement of the brain into circuits is covered, along with developments in neuro-imaging.

Type
Chapter
Information
The Neuropsychology of Dementia
A Clinician's Manual
, pp. 1 - 14
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida-Meza, P., Steptoe, A., & Cadar, D. (2021). Is engagement in intellectual and social leisure activities protective against dementia risk? Evidence from the English Longitudinal Study of Ageing. Journal of Alzheimer’s Disease, 80(2), 555–65.Google ScholarPubMed
Alzheimer, A. (1907). Uber eine eigenaritage, schweren Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und phychish-Gerichtliche Medizin (Berlin), 25, 1134.Google Scholar
Alzheimer’s Disease International. (2015). World Alzheimer Report 2015: The Global Impact of Dementia. www.alz.co.uk/research/WorldAlzheimerReport2015.pdf.Google Scholar
Alzheimer’s Society (2020c). What causes young onset dementia? https://bit.ly/3SdEkAJ.Google Scholar
American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC: American Psychiatric Association.Google Scholar
Avila, J., Santa-María, I., Pérez, M., Hernández, F., & Moreno, F. (2006). Tau phosphorylation, aggregation, and cell toxicity. Journal of Biomedicine & Biotechnology, 2006(3), 74539. https://doi.org/10.1155%2FJBB%2F2006%2F74539.Google ScholarPubMed
Bates, M. E., Bowden, S. C., & Barry, D. (2002). Neurocognitive impairment associated with alcohol use disorders: Implications for treatment. Experimental and Clinical Psychopharmacology, 10(3), 193212.CrossRefGoogle ScholarPubMed
Bessen, R. A., & Marsh, R. F. (1992). Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. Journal of Virology, 66, 2096–101.CrossRefGoogle ScholarPubMed
Binder, L. I., Frankfurter, A., & Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous system. Journal of Cell Biology, 101(4), 1371–8.Google ScholarPubMed
Braak, H., & Braak, E. (1997). Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiology of Aging, 18(4), 351–7.CrossRefGoogle ScholarPubMed
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology, 70(11), 960–9.CrossRefGoogle ScholarPubMed
Cacace, R., Sleegers, K., & Van Broeckhoven, C. (2016). Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s & Dementia, 12(6), 733–48.CrossRefGoogle ScholarPubMed
Cervós‐Navarro, J., & Schumacher, K. (1994). Neurofibrillary pathology in progressive supranuclear palsy (PSP). Journal of Neural Transmission, Suppl; 42, 153–64.CrossRefGoogle ScholarPubMed
Chen, H., Epstein, J., & Stern, E. (2010). Neural plasticity after acquired brain injury: Evidence from functional neuroimaging. Physical Medicine and Rehabilitation, 2(125), S306S312.Google ScholarPubMed
Collinge, J., Beck, J., Campbell, T., Estibeiro, K., & Will, R. G. (1996a) Prion protein gene analysis in new variant cases of Creutzfeldt–Jakob disease. Lancet, 348, 56.CrossRefGoogle ScholarPubMed
Day, E., Bentham, P., Callaghan, R., Kuruvilla, T., & George, S. (2004). Thiamine for Wernicke‐Korsakoff syndrome in people at risk from alcohol abuse. Cochrane Database of Systematic Reviews (1).CrossRefGoogle ScholarPubMed
de Silva, R., Lashley, T., Strand, C., et al. (2006). An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathologica, 111, 329–40.CrossRefGoogle ScholarPubMed
Deary, I. J., Corley, J., Gow, A. J., et al. (2009). Age-associated cognitive decline. British Medical Bulletin, 92, 135–52.CrossRefGoogle ScholarPubMed
Delacourte, A. (2001). The molecular parameters of tau pathology: Tau as a killer and a witness. In Tolnay, M. & Probst, A. (Eds.), Neuropathology and the Genetics of Dementia (pp. 519). New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Delacourte, A., Sergeant, N., Wattez, A., et al. (1998) Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation. Annals of Neurology, 43, 193204.CrossRefGoogle ScholarPubMed
Dichgans, M., & Leys, D. (2017). Vascular cognitive impairment. Circulation Research, 120, 573–91.CrossRefGoogle ScholarPubMed
Enciu, A.-M., & Popescu, B. (2013). Is there a causal link between inflammation and dementia? Biomedical Research International, 2013, Article ID 316495.CrossRefGoogle Scholar
Fornito, A., Zalesky, A., & Breakspeare, M. (2015). The connectomics of brain disorders. Nature Reviews: Neuroscience, 16, 159–72.CrossRefGoogle ScholarPubMed
Fox, N. (2019). Imaging in dementia. Journal of Neurological Sciences, 405 (supplement), 1617.CrossRefGoogle Scholar
Gibb, W. R. G., Esiri, M. M., & Lees, A. J. (1987). Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain, 110, 1131–53.CrossRefGoogle ScholarPubMed
Giraud, T. D., Thompson, J. L., Pandharipande, P. P., et al. (2018). Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: A prospective cohort study. The Lancet, 6(3), 213–22.Google Scholar
Glenner, C. C., & Wong, C. W. (1984). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemistry and Biophysical Research Communications, 120, 885–90.CrossRefGoogle ScholarPubMed
Goldman, M. S. (1983). Cognitive impairment in chronic alcoholics: Some cause for optimism. American Psychologist, 38(10), 1045–54.CrossRefGoogle ScholarPubMed
Harvey, R. J., Skelton-Robinson, M., & Rossor, M. N. (2003). The prevalence and causes of dementia in people under the age of 65 years. Journal of Neurology, Neurosurgery and Psychiatry, 74, 1206–9.CrossRefGoogle ScholarPubMed
Hervé, D., & Chabriat, H. (2010). CADASIL. Journal of Geriatric Psychiatry and Neurology, 23(4), 269–76.CrossRefGoogle ScholarPubMed
Ho, A. K. (2019). Huntington’s disease. In Hocking, D. R., Bradshaw, J. L., & Fielding, J. (Eds.), Degenerative Disorders of the Brain (pp. 88155). Oxford: Routledge.CrossRefGoogle Scholar
Iliff, J. J., Wang, M., Liao, Y., et al. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine, 4(147), 147ra111. https://doi.org/10.1126/scitranslmed.3003748.CrossRefGoogle ScholarPubMed
Jamadar, S. (2019). Brain circuitry in ageing and neurodegenerative disease. In Hocking, D. R., Bradshaw, J. L. and Fielding, J. (Eds.), Degenerative Disorders of the Brain (pp. 131). New York: Routledge.Google Scholar
Jessen, N. A., Munk, A. S. F., Lundgaard, I., & Nedergaard, M. (2015). The glymphatic system: A beginner’s guide. Neurochemical Research, 40, 2583–99.CrossRefGoogle ScholarPubMed
Kalish, V. B., Gillham, J. E., & Unwin, B. K. (2014). Delirium in older persons: Evaluation and management. American Family Physician, 90(3), 150–8.Google ScholarPubMed
Kanaan, N. M., Himmelstein, D. S., Ward, S. M., Combs, B., & Binder, L. I. (2015). Tau protein: Biology and pathobiology. In LeDoux, M. S (Ed.), Movement Disorders: Genetics and Models, 2nd ed. (pp. 857–74). London: Academic Press.Google Scholar
Katzman, R., Aronson, M., & Fuld, P., et al. (1989). Development of dementing illnesses in an 80-year-old volunteer cohort. Annals of Neurology, 25, 317324.CrossRefGoogle Scholar
Kelley, B. J., Boeve, B. F., & Josephs, K. A. (2008). Young-onset dementia: Demographic and etiologic characteristics of 235 patients. Archives of Neurology, 65, 1502–8.CrossRefGoogle ScholarPubMed
Keum, J. W., Shin, A., Gillis, T., et al. (2016). The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. American Journal of Human Genetics, 98(2), 287–98.CrossRefGoogle Scholar
Kukreja, D., Günther, U., & Popp, J. (2015). Delirium in the elderly: Current problems with increasing geriatric age. Indian Journal of Medical Research, 142(6), 655–62.Google ScholarPubMed
Laforce, R Jr., Soucy, J. P., Sellami, L., et al. (2018). Molecular imaging in dementia: Past, present and future. Alzheimer’s and Dementia, 14(11), 1522–52.CrossRefGoogle ScholarPubMed
Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine, 7, 97.CrossRefGoogle ScholarPubMed
Lim, A., Tsuang, D., Kukull, W., et al. (1999). Cliniconeuropathological correlation of Alzheimer’s disease in a community-based case series. Journal of the American Geriatric Society, 47, 564–9.CrossRefGoogle Scholar
Loy, C. T., Schofield, P. R., Turner, A., & Kwok, J. B. J. (2014). The genetics of dementia. Lancet, 383, 828–40.CrossRefGoogle ScholarPubMed
MacDonald, M. E., Ambrose, C. M., Duyao, M. P., et al. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–83.CrossRefGoogle Scholar
MacQueen, G. M., & Memedovich, K. A. (2016). Cognitive dysfunction in major depression and bipolar disorder: Assessment and treatment. Psychiatry and Clinical Neurosciences, 71(1), 1827.CrossRefGoogle ScholarPubMed
Mason, A., Holmes, C., & Edwards, C. (2019). Inflammation and dementia: Using rheumatoid arthritis as a model to develop treatments? Autoimmunity Reviews, 17(9), 919–25.Google Scholar
Mathews, J. D., Glasse, R., & Lindenbaum, S. (1968). Kuru and cannibalism. The Lancet, 292, 449–52.CrossRefGoogle Scholar
Matthews, F. E., Stephan, B. C. M., Robinson, L., et al. (2016). A two-decade dementia incidence comparison from the cognitive function and ageing studies I & II. Lancet, 382, 1405–12. https://doi.org/10.1038/ncomms11398.Google Scholar
McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1), 18.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., et al. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939–44.CrossRefGoogle ScholarPubMed
McKhann, G. M., Knopman, D. S., Chertkow, H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia, 7, 263–9.CrossRefGoogle ScholarPubMed
Mees, I., Tran, H., Renoir, T., & Hannan, A. J. (2019). Experience-dependent modulation of neurodegenerative disorders: Huntington’s disease as an exemplar. In Hocking, D. R., Bradshaw, J. L. & Fielding, J. (Eds.), Degenerative Disorders of the Brain. Oxford: Routledge.Google Scholar
Mestre, H., Mori, Y., & Nedergaard, M. (2020). The brain’s glymphatic system: Current controversies. Trends in Neurosciences, 43(7), 458–66.CrossRefGoogle ScholarPubMed
Moore, K. M., Nicholas, J., Grossman, M., et al. (2020). Age at symptom onset and death and disease duration in genetic frontotemporal dementia: An international retrospective cohort study. Lancet Neurology, 19(2), 145–56.CrossRefGoogle ScholarPubMed
Moulaert, V. R., Verbunt, J. A., van Heugten, C. M., Wade, D. T. (2009). Cognitive impairments in survivors of out-of-hospital cardiac arrest: A systematic review. Resuscitation, 80(3), 297305.CrossRefGoogle ScholarPubMed
Neumann, M., Sampathu, D. M., Kwong, L. K., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–3.CrossRefGoogle ScholarPubMed
Nolan, M., Talbot, K., & Ansorge, O. (2016). Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathologica Communications, 4, 99. https://doi.org/10.1186/s40478-016-0358-8.CrossRefGoogle ScholarPubMed
Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve. Ageing Clinical and Experimental Research, 24(3), 218–26.Google ScholarPubMed
Nudo, R. J. (2011). Neural basis of recovery after brain injury. Journal of Communication Disorders, 44(5), 515–20.CrossRefGoogle Scholar
Petersen, R. C. (2016). Mild cognitive impairment. Dementia, 22(2), 404–18.Google ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., et al. (1999). Mild cognitive impairment: Clinical characterisation and outcome. Archives of Neurology, 56(3), 303–8.CrossRefGoogle ScholarPubMed
Platt, F. M., d’Azzo, A., Davidson, B. L., et al. (2018). Lysosomal storage diseases. Nature Reviews Disease Primers, 4, 27.CrossRefGoogle ScholarPubMed
Prince, M. et al. (2014). Dementia UK: Update Second Edition report produced by King’s College London and the London School of Economics for the Alzheimer’s Society. www.alzheimers.org.uk/sites/default/files/migrate/downloads/dementia_uk_update.pdf.Google Scholar
Ridley, N. J., Draper, B., & Withall, A. (2013). Alcohol-related dementia: An update of the evidence. Alzheimers Research and Therapy, 5(1), 3.CrossRefGoogle ScholarPubMed
Rosso, S. M., Kamphorst, W., de Graaf, B., et al. (2001). Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–2. Brain, 124(Pt 10), 1948–57.CrossRefGoogle Scholar
Roy, R., Niccolini, F., Pagano, G., et al. (2016). Cholinergic imaging in dementia spectrum disorders. European Journal of Nuclear Medicine & Molecular Imaging, 43, 1376–86.CrossRefGoogle ScholarPubMed
Sachdeva, A., Chandra, M., Choudhary, M., Dayal, P., & Anand, K. S. (2016). Alcohol-related dementia and neurocognitive impairment: A review study. International Journal of High Risk Behaviors & Addiction, 5(3), e27976.CrossRefGoogle ScholarPubMed
Salthouse, T. (2010). Selective review of cognitive ageing. Journal of the International Neuropsychological Society, 16, 754–60.CrossRefGoogle Scholar
Sampson, E. L., Warren, J. D., & Rossor, M. N. (2004). Young onset dementia. Postgraduate Medical Journal, 80, 125–39.CrossRefGoogle ScholarPubMed
Saunders, A. M., Blennow, K., Breteler, M. M. B., et al. (1993). Association of apolipoprotein E allele ϵ4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43(8), 1467.CrossRefGoogle ScholarPubMed
Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. 2007. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology, 69(24), 2197–204.CrossRefGoogle ScholarPubMed
Schoenberg, M. R., & Duff, K. (2011). Dementias and mild cognitive impairment in adults. In Schoenberg, M. R. & Scott, J. G. (Eds.), The Little Black Book of Neuropsychology. New York: Springer.CrossRefGoogle Scholar
Selkoe, D., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595608.CrossRefGoogle ScholarPubMed
Seshadri, S., Drachman, D. A., & Lippa, C. F. (1995). Apolipoprotein E epsilon 4 allele and the lifetime risk of Alzheimer’s disease: What physicians know, and what they should know. Archives of Neurology, 52, 1074–9.CrossRefGoogle ScholarPubMed
Sinclair, D. A., & LaPlante, M. D. (2019). Lifespan: Why We Age – And Why We Don’t Have To. New York: Atria Books.Google Scholar
Slooter, A. J., Cruts, M., Kalmijn, S., et al. (1998). Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: The Rotterdam Study. Archives of Neurology, 55(7), 964–8.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Crowther, R. A., Jakes, R., et al. (1998). α‐Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469–73.Google ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–60.CrossRefGoogle ScholarPubMed
Thomson, A. D., Cook, C. C., Touquet, R., & Henry, J. A. (2002). The Royal College of Physicians report on alcohol: Guidelines for managing Wernicke’s encephalopathy in the accident and emergency. Alcohol and Alcoholism, 37(6), 513–21.CrossRefGoogle ScholarPubMed
Trembath, M. K., Horton, Z. A., Tippett, L., et al. (2010). A retrospective study on the impact of lifestyle on age at onset of Huntington’s disease. Movement Disorders, 25(10), 1444–50.CrossRefGoogle Scholar
Trojanowski, J., Goedert, M., & Iwatsubo, T., et al. (1998). Fatal attractions: Abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death & Differentiation, 5, 832–7.CrossRefGoogle ScholarPubMed
Trottier, Y. V., Biancalana, J. L., & Mandel, J. (1994). Instability of CAG repeats in Huntingtons disease: Relation to parental transmission and age of onset. Journal of Medical Genetics, 31(5), 377–82.CrossRefGoogle ScholarPubMed
Vaou, O. E., Lin, S. H., Branson, C., et al. (2018). Sleep and dementia. Current Sleep Medicine Reports, 4, 134–42.CrossRefGoogle Scholar
Walker, M. (2018). Why we sleep. Penguin Books Limited.Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., et al. (2004). Mild cognitive impairment – Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240–6.CrossRefGoogle Scholar
Woods, J. A., Wilund, K. R., Martin, S. A., & Kistler, B. (2012). Exercise, inflammation and aging. Aging and Disease, 3(1), 130–40.Google ScholarPubMed
World Health Organization (2018). International Classification of Diseases, 11th edition.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Overview
  • Simon Gerhand, Hywel Dda Health Board, NHS Wales
  • Book: The Neuropsychology of Dementia
  • Online publication: 25 October 2024
  • Chapter DOI: https://doi.org/10.1017/9781009025911.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Overview
  • Simon Gerhand, Hywel Dda Health Board, NHS Wales
  • Book: The Neuropsychology of Dementia
  • Online publication: 25 October 2024
  • Chapter DOI: https://doi.org/10.1017/9781009025911.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Overview
  • Simon Gerhand, Hywel Dda Health Board, NHS Wales
  • Book: The Neuropsychology of Dementia
  • Online publication: 25 October 2024
  • Chapter DOI: https://doi.org/10.1017/9781009025911.002
Available formats
×