Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T20:12:18.123Z Has data issue: false hasContentIssue false

Chapter 11 - Prognostication in Fulminant Hepatic Failure

from Part I - Disease-Specific Prognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

Acute liver failure (ALF), a liver injury developing over 26 weeks or less with evidence of coagulopathy and encephalopathy, disproportionately affects young, healthy adults with high resultant mortality.[1] ALF results in cerebral dysfunction, which can range from minor encephalopathy to coma, and is associated with high neurological morbidity due to higher grade hepatic encephalopathy (HE), cerebral edema, and elevated intracranial pressure (ICP),[2,3] although other complications including seizures may contribute.[4]

While ALF is considered a rare syndrome, with an estimated annual incidence of 1–5 cases per million people yearly,[5] there appears to be a trend toward increasing numbers of hospitalizations for ALF, including up to a 30% increase in the United States over a 4-year period.[6] Etiologies of ALF vary geographically; in developed countries, the majority of cases are caused by toxic ingestions, autoimmune hepatitis, or hepatitis B, while cases in developing countries most commonly are caused by hepatitis A, B, or E.[7] ALF etiologies appear in Table 11.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

European Association for the Study of the Liver. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017;66(5):1047–81.Google Scholar
Bernal, W, Wendon, J. Acute liver failure. N Engl J Med. 2013;369(26):2525–34.CrossRefGoogle ScholarPubMed
Sarici, KB, Karakas, S, Otan, E, et al. Can patients who develop cerebral death in fulminant liver failure despite liver transplantation be previously forseen? Transplant Proc. 2017;49(3):571–4.CrossRefGoogle ScholarPubMed
Datar, S, Wijdicks, EF. Neurologic manifestations of acute liver failure. Handb Clin Neurol. 2014;120:645–59.CrossRefGoogle ScholarPubMed
Bower, WA, Johns, M, Margolis, HS, Williams, IT, Bell, BP. Population-based surveillance for acute liver failure. Am J Gastroenterol. 2007;102:2459–63.CrossRefGoogle ScholarPubMed
Hirode, G, Vittinghoff, E, Wong, RJ. Increasing burden of hepatic encephalopathy among hospitalized adults: an analysis of the 2010–2014 national inpatient sample. Dig Dis Sci. 2019;64(6):1448–57.CrossRefGoogle ScholarPubMed
Stravitz, RT, Lee, WM. Acute liver failure. Lancet. 2019;394:869–81.CrossRefGoogle ScholarPubMed
Riordan, SM & Williams, R. Perspectives on liver failure: past and future. Semin Liver Dis. 2008;28(2):137–41.CrossRefGoogle ScholarPubMed
Ferenci, P, Lockwood, A, Mullen, K, et al. Hepatic encephalopathy – definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35(3):716–21.Google Scholar
Weissenborn, K, Ennen, JC, Schomerus, H, Ruckert, N, Hecker, H. Neuropsychological characterization of hepatic encephalopathy. J Hepatol. 2001;34(5):768–73.CrossRefGoogle ScholarPubMed
Shawcross, DL, Wendon, JA. The neurological manifestations of acute liver failure. Neurochem Int. 2012;60(7):662–71.CrossRefGoogle ScholarPubMed
Stravitz, RT, Kramer, DJ. Management of acute liver failure. Nat Rev Gastroenterol Hepatol. 2009;6(9):542–53.CrossRefGoogle ScholarPubMed
Atterbury, CE, Maddrey, WC, Conn, HO. Neomycin-sorbitol and lactulose in the treatment of acute portal-systemic encephalopathy: a controlled, double-blind clinical trial. Am J Dig Dis. 1978;23(5):398406.CrossRefGoogle ScholarPubMed
Kumar, R, Shalimar, HS, Sharma, H, et al. Prospective derivation and validation of early dynamic model for predicting outcome in patients with acute liver failure. Gut. 2012;61(7):1068–75.CrossRefGoogle ScholarPubMed
Tan, WF, Steadman, RH, Farmer, DG, et al. Pretransplant neurological presentation and severe posttransplant brain injury in patients with acute liver failure. Transplantation. 2012;94(7):768–74.CrossRefGoogle ScholarPubMed
Munoz, SJ, Mortiz, MJ, Bell, R, et al. Factors associated with severe intracranial hypertension in candidates for emergency liver transplantation. Transplantation. 1993;55:1071–4.CrossRefGoogle ScholarPubMed
Raschke, RA, Curry, SC, Rempe, S, et al. Results of a protocol for the management of patients with fulminant liver failure. Crit Care Med. 2008;36;2244–8.CrossRefGoogle ScholarPubMed
Rabinowich, L, Wendon, J, Bernal, W, Shibolet, O. Clinical management of acute liver failure: results of an international multi-center survey. World J Gastroenterol. 2016;22(33):7595–603.CrossRefGoogle ScholarPubMed
O’Grady, JG, Alexander, GJ, Hayllar, KM, Williams, R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology. 1989;97(2):439–45.Google ScholarPubMed
Bernal, W, Wang, Y, Maggs, J, et al. Development and validation of a dynamic outcome prediction model for paracetamol-induced acute liver failure: a cohort study. Lancet Gastroenterol Hepatol. 2016;1(3):217–25.Google ScholarPubMed
Munoz, SJ, Robinson, M, Northrup, B, et al. Elevated intracranial pressure and computed tomography of the brain in fulminant hepatocellular failure. Hepatology. 1991;13(2):209–12.CrossRefGoogle ScholarPubMed
Rama Rao, KV, Jayakumar, AR, Norenberg, MD. Brain edema in acute liver failure: mechanisms and concepts. Metab Brain Dis. 2014;29(4):927–36.CrossRefGoogle ScholarPubMed
Ranjan, P, Mishra, AM, Kale, R, Saraswat, VA, Gupta, RK. Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects. Metab Brain Dis. 2005;20(3):181–92.CrossRefGoogle ScholarPubMed
Pulivarthi, S, Gurram, MK. Magnetic resonance imaging of brain findings in hyperammonemic encephalopathy. J Neurosci Rural Pract. 2016;7(3):469–71.Google ScholarPubMed
Fridman, V, Galetta, SL, Pruitt, AA, Levine, JM. MRI findings associated with acute liver failure. Neurology. 2009;72(24):2130–1.CrossRefGoogle ScholarPubMed
Chavarria, L, Cordoba, J. Magnetic resonance imaging and spectroscopy in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5(Suppl 1):S6974.CrossRefGoogle ScholarPubMed
Hansen, HC, Helmke, K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat. 1996;18(4):323–8.CrossRefGoogle ScholarPubMed
Dubourg, J, Javouhey, E, Geeraerts, T, Messerer, M, Kassai, B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.CrossRefGoogle ScholarPubMed
Hansen, HC, Helmke, K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):3440.CrossRefGoogle ScholarPubMed
Launey, Y, Nesseler, N, Le Maquet, P, Malledant, Y, Sequin, P. Effect of osmotherapy on optic nerve sheath diameter in patients with increased intracranial pressure. J Neurotrauma. 2014;31(10):984–8.CrossRefGoogle ScholarPubMed
Rajajee, V, Williamson, CA, Fontana, RJ, Courey, AJ, Patil, PG. Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care. 2018;29(2):280–90.Google ScholarPubMed
Kim, YK, Seo, H, Yu, J, Hwang, GS. Noninvasive estimation of raised intracranial pressure using ocular ultrasonography in liver transplant recipients with acute liver failure – a report of two cases. Korean J Anesthesiol. 2013;64(5):451–5.CrossRefGoogle ScholarPubMed
Krishnamoorthy, V, Beckmann, K, Mueller, M, Sharma, D, Vavilala, MS. Perioperative estimation of the intracranial pressure using the optic nerve sheath diameter during liver transplantation. Liver Transpl. 2013;19(3):246–9.CrossRefGoogle ScholarPubMed
Zaman, MB, Hoti, E, Qasim, A, et al. MELD score as a prognostic model for listing acute liver failure patients for liver transplantation. Transplant Proc. 2006;38(7):2097–8.CrossRefGoogle ScholarPubMed
Kim, WR, Biggins, SW, Kremers, WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359(10):1018–26.CrossRefGoogle ScholarPubMed
Butterworth, RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine. Mol Genet Metab. 2014;113(1–2):113–17.CrossRefGoogle ScholarPubMed
Kumar, R, Shalimar, , Sharma, H, et al. Persistent hyperammonemia is associated with complications and poor outcomes in patients with acute liver failure. Clin Gastroenterol Hepatol. 2012;10(8):925–31.CrossRefGoogle ScholarPubMed
Bemeur, C, Cudalbu, C, Dam, G, et al. Brain edema: a valid endpoint for measuring hepatic encephalopathy? Metab Brain Dis. 2016;31(6):1249–58.CrossRefGoogle ScholarPubMed
Clemmesen, JO, Larsen, FS, Kondrup, J, Hansen, BA, Ott, P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29(3):648–53.CrossRefGoogle ScholarPubMed
Bernal, W, Hall, C, Karvellas, CJ, et al. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology. 2007;46(6):1844–52.CrossRefGoogle ScholarPubMed
Cardoso, FS, Gottfried, M, Tujios, S, Olson, JC, Karvellas, CJ, US Acute Liver Failure Study Group. Continuous renal replacement therapy is associated with reduced serum ammonia levels and mortality in acute liver failure. Hepatology. 2018;67(2):711–20.CrossRefGoogle ScholarPubMed
Rolando, N, Wade, J, Davalos, M, et al. The systemic inflammatory response syndrome in acute liver failure. Hepatology. 2000;32(4 Pt 1):734–9.CrossRefGoogle ScholarPubMed
Vaquero, J, Polson, J, Chung, C, et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology. 2003;125(3):755–64.CrossRefGoogle ScholarPubMed
Wright, G, Shawcross, D, Olde Damink, SW, Jalan, R. Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab Brain Dis. 2007;22(3–4):375–88.CrossRefGoogle ScholarPubMed
Jalan, R, Olde Damink, SW, Hayes, PC, Deutz, NE, Lee, A. Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J Hepatol. 2004;41(4):613–60.CrossRefGoogle ScholarPubMed
Bernal, W, Donaldson, N, Wyncoll, D, Wendon, J. Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study. Lancet. 2002;359(9306):558–63.CrossRefGoogle ScholarPubMed
Bernal, W. Lactate is important in determining prognosis in acute liver failure. J Hepatol. 2010;53(1):209210.CrossRefGoogle ScholarPubMed
Michard, B, Artzner, T, Lebas, B, et al. Liver transplantation in critically ill patients: Preoperative predictive factors of post-transplant mortality to avoid futility. Clin Transplant. 2017;31(12):e13115.CrossRefGoogle ScholarPubMed
Ott, P, Vilstrup, H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis. 2014;29(4):901–11.CrossRefGoogle ScholarPubMed
Rose, CF. Increase brain lactate in hepatic encephalopathy: cause or consequence? Neurochem Int. 2010;57(4):389–94.CrossRefGoogle ScholarPubMed
Baquerizo, A, Anselmo, D, Shackleton, C, et al. Phosphorus as an early predictive factor in patients with acute liver failure. Transplantation. 2003;75(12):2007–14.CrossRefGoogle ScholarPubMed
Chung, HS, Lee, YJ, Jo, YS. Proposal for a new predictive model of short-term mortality after living donor liver transplantation due to acute liver failure. Ann Transplant. 2017;22:101–7.CrossRefGoogle ScholarPubMed
Guerit, JM, Amantini, A, Fischer, C, et al. Neurophysiological investigations of hepatic encephalopathy: ISHEN practice guidelines. Liver Int. 2009;29(6):789–96.CrossRefGoogle ScholarPubMed
Ellis, AJ, Wendon, JA, Williams, R. Subclinical seizure activity and prophylactic phenytoin infusion in acute liver failure: a controlled clinical trial. Hepatology. 2000;32(3):536–41.CrossRefGoogle ScholarPubMed
Bhatia, V, Batra, Y, Acharya, SK. Prophylactic phenytoin does not improve cerebral edema or survival in acute liver failure – a controlled clinical trial. J Hepatol. 2004;41(1):8996.CrossRefGoogle ScholarPubMed
Trewby, PN, Casemore, C, Williams, R. Continuous bipolar recording of the EEG in patients with fulminant hepatic failure. Electroencephalogr Clin Neurophysiol. 1978;45(1):107–10.CrossRefGoogle ScholarPubMed
Davenport, A, Bramley, PN. 1993. Cerebral function analyzing monitor and visual evoked potentials as a noninvasive method of detecting cerebral dysfunction in patients with acute hepatic and renal failure treated with intermittent machine hemofiltration. Renal Fail. 1993;15(4):515–22.CrossRefGoogle ScholarPubMed
Van der Rijt, C, Schalm, SW. Quantitative EEG analysis and survival in liver disease. Electroencephalogr Clin Neurophysiol. 1985;61(6):502–4.CrossRefGoogle ScholarPubMed
Stewart, J, Sarkela, M, Koivusalo, AM, et al. Frontal electroencephalogram variables are associated with the outcome and stage of hepatic encephalopathy in acute liver failure. Liver Transpl. 2014;20(10):1256–65.CrossRefGoogle ScholarPubMed
Fortea, JI, Banares, R, Vaquero, J. Intracranial pressure in acute liver failure: to bolt or not to bolt – that is the question. Crit Care Med. 2014;42(5):1304–5.CrossRefGoogle ScholarPubMed
Maloney, PR, Mallory, GW, Atkinson, JL, Wijdicks, EF, Rabinstein, AA, Van Gompel, JJ. Intracranial pressure monitoring in acute liver failure: institutional case series. Neurocrit Care. 2016;25(1):8693.CrossRefGoogle ScholarPubMed
Blei, AT, Olafsson, S, Webster, S, Levy, R. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet. 1993;341(8838):157–8.CrossRefGoogle ScholarPubMed
Karvellas, CJ, Fix, OK, Battenhouse, H, et al. Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med. 2014;42(5):1157–67.CrossRefGoogle ScholarPubMed
Vaquero, J, Fontana, RJ, Larson, AM, et al. 2005. Complications and use of intracranial pressure monitoring in patients with acute liver failure and severe encephalopathy. Liver Transpl. 2005;11(12):1581–9.CrossRefGoogle ScholarPubMed
Rajajee, V, Fontana, RJ, Courey, AJ, Patil, PG. Protocol based invasive intracranial pressure monitoring in acute liver failure: feasibility, safety and impact on management. Crit Care. 2017;21(1):178.CrossRefGoogle ScholarPubMed
Kang, YG, Martin, DJ, Marquez, J, et al. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg. 1985;64(9):888–96.CrossRefGoogle ScholarPubMed
Kamat, P, Kunde, S, Vos, M, et al. Invasive intracranial pressure monitoring is a useful adjunct in the management of severe hepatic encephalopathy associated with pediatric acute liver failure. Pediatr Crit Care Med. 2012;13(1):e3338.CrossRefGoogle ScholarPubMed
Larsen, FS, Ejlersen, E, Hansen, BA, et al. Functional loss of cerebral blood flow autoregulation in patients with fulminant hepatic failure. J Hepatol. 1995;23(2):212–17.CrossRefGoogle ScholarPubMed
Strauss, GI, Hogh, P, Moller, K, Regional cerebral blood flow during mechanical hyperventilation in patients with fulminant hepatic failure. Hepatology. 1999;30(6):1368–73.CrossRefGoogle ScholarPubMed
Larsen, FS, Strauss, G, Moller, K, Hansen, BA. Regional cerebral blood flow autoregulation in patients with fulminant hepatic failure. Liver Transpl. 2000;6(6):795800.CrossRefGoogle ScholarPubMed
Werner, C, Kochs, E, Rau, M, Schulte Esch, J. Transcranial Doppler sonography as a supplement in the detection of cerebral circulatory arrest. J Neurosurg Anesthesiol. 1990;2(3):159–65.CrossRefGoogle ScholarPubMed
Aaslid, R, Lundar, T, Lindegaard, KF, Nornes, H. Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In Miller, JD, Teasdale, GM, Rowan, JO, editors. Intracranial Pressure VI. Berlin: Springer, 1986; 226–9.Google Scholar
Chan, KH, Miller, JD, Dearden, NM, Andrews, PJ, Midgley, S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg. 1992;77(1):5561.CrossRefGoogle ScholarPubMed
Edouard, AR, Vanhille, E, Le-Moigno, S, Benhamou, D, Mazoit, JX. Non-invasive assessment of cerebral perfusion pressure in brain injured patients with moderate intracranial hypertension. Br J Anaesth. 2005;94(2):216–21.CrossRefGoogle ScholarPubMed
Aggarwal, S, Brooks, DM, Kang, Y, Linden, PK, Patzer, JF. Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial Doppler ultrasonography. Liver Transpl. 2008;14(7):1048–57.CrossRefGoogle ScholarPubMed
Kawakami, M, Koda, M, Murawaki, Y. Cerebral pulsatility index by transcranial Doppler sonography predicts the prognosis of patients with fulminant hepatic failure. Clin Imaging. 2010;34(5):327–31.CrossRefGoogle ScholarPubMed
Abdo, A, Perez-Bernal, J, Hinojosa, R, et al. Cerebral hemodynamics patterns by transcranial Doppler in patients with acute liver failure. Transplant Proc. 2015;47(9):2647–9.CrossRefGoogle ScholarPubMed
Paschoal, FM Jr, Nogueira, RC, Ronconi Kde, A, et al. Multimodal brain monitoring in fulminant hepatic failure. World J Hepatol. 2016;8(22):915–23.CrossRefGoogle ScholarPubMed
Steiner, LA, Andrews, PJ. Monitoring the injured brain: ICP and CBF. Br J Anaesth. 2006;97(1):2638.CrossRefGoogle ScholarPubMed
Strauss, GI, Møller, K, Holm, S, et al. Transcranial doppler sonography and internal jugular bulb saturation during hyperventilation in patients with fulminant hepatic failure. Liver Transpl. 2001;7(4):352–8.CrossRefGoogle ScholarPubMed
Jalan, R, Olde Damink, SW, Deutz, NE, Hayes, PC, Lee, A. Restoration of cerebral blood flow autoregulation and reactivity to carbon dioxide in acute liver failure by moderate hypothermia. Hepatology. 2001;34(1):50–4.CrossRefGoogle ScholarPubMed
Kim, Y, Kim, CK, Jung, S, Ko, SB. Brain oxygen monitoring via jugular venous oxygen saturation in a patient with fulminant hepatic failure. Korean J Crit Care Med. 2016;31:251–5.CrossRefGoogle Scholar
Moore, KA. Liver transplantation: what do we really know about the long-term impact? Liver Transpl. 2003;9(11):1149–51.CrossRefGoogle ScholarPubMed
Weiss, N, Thabut, D. Neurological complications occurring after liver transplantation: role of risk factors, hepatic encephalopathy, and acute (on chronic) brain injury. Liver Transpl. 2019;25(3):469–87.CrossRefGoogle ScholarPubMed
Rangnekar, AS, Ellerbe, C, Durkalski, V, et al. Quality of life is significantly impaired in long-term survivors of acute liver failure and particularly in acetaminophen-overdose patients. Liver Transpl. 2013;19(9):9911000.CrossRefGoogle ScholarPubMed
Chan, G, Taqi, A, Marotta, P, et al. Long-term outcomes of emergency liver transplantation for acute liver failure. Liver Transpl. 2009;15(12):16961702.CrossRefGoogle ScholarPubMed
Jackson, EW, Zacks, S, Zinn, S, et al. Delayed neuropsychologic dysfunction after liver transplantation for acute liver failure: a matched, case–controlled study. Liver Transpl. 2002;8(10):932–6.CrossRefGoogle ScholarPubMed
Lewis, MB, Howdle, PD. Cognitive dysfunction and health-related quality of life in long-term liver transplant survivors. Liver Transpl. 2003;9(11):1145–8.CrossRefGoogle ScholarPubMed
Alsina, A, Alsina, A, Athienitis, A, et al. Is fulminant hepatic failure the nemesis for liver transplant centers? A two decade psychosocial and long-term outcome study. Am Surg. 2018;84(7):11971203.CrossRefGoogle Scholar
Rangnekar, AS, Ellerbe, C, Durkalski, V, et al. Quality of life is significantly impaired in long-term survivors of acute liver failure and particularly in acetaminophen-overdose patients. Liver Transpl. 2013;19(9):9911000.CrossRefGoogle ScholarPubMed
Wright, G, Sharifi, Y, Jover-Cobos, M, Jalan, R. The brain in acute on chronic liver failure. Metab Brain Dis. 2014;29(4):965–73.CrossRefGoogle ScholarPubMed
Cudalbu, C, Taylor-Robinson, SD. Brain edema in chronic hepatic encephalopathy. J Clin Exp Hepatol. 2019;9(3):362–82.CrossRefGoogle ScholarPubMed
Reynolds, AS, Brush, B, Schiano, TD, Reilly, KJ, Dangayach, NS. Neurological monitoring in acute liver failure. Hepatology. 2019;70(5):1830–5.CrossRefGoogle ScholarPubMed
Tofteng, F, Larsen, FS. The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab. 2004;24(7):798804.CrossRefGoogle ScholarPubMed
Slack, AJ, Auzinger, G, Willars, C, et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 2014;34(1):42–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×