from Part IV - Philosophical and theoretical considerations
Published online by Cambridge University Press: 05 February 2012
Introduction
One of the most amazing aspects of brain function is that free will and consciousness emerges from the simple elemental functions of neurons. How do a hundred billion neurons produce global functions, such as intention, mind, and consciousness? As gathering a billion people is not equal to making a civilized society, the brain is not merely a combination of neurons. There would be rules of relation and principles of action. I have been interested for many years in the neurodynamics of situated cognition and contextual decision making, particularly focusing on synchronization mechanisms in the brain. Neural synchronization is well known in spinal motor coordination (e.g. central pattern generators, CPG), circadian rhythms and EEG recordings of human brain activities during mental tasks. Synchronized population activity plays functional roles in memory formation and context-dependent utilization of personal experiences in animal models. However, those experiments and models have dealt with a specific brain circuit in a fixed condition, or at least less attention has been given to an embodied view, where the brain, body, and environment comprise a closed whole loop. The embodied view is the natural setting for a brain functioning in the real world. I have recently become interested in building an online and on-demand experimental platform to link the robotic body with its neurodynamics. This platform is implemented in a remote computer and gives us the advantage of studying brain functions in a dynamic environment, and to offer qualitative analyses of behavioral time, in contradistinction to neuronal time, or mental time. This chapter relates past work to present work in an informal way that might be uncommon in journal papers. By taking advantage of this opportunity, I will use informal speech and explanations, as well as personal anecdotes to guide the reader to understand important trends and perspectives in this topic. Section 12.1 gives an introduction to artificial systems that makes a commitment to biology, and argues a point of biologically inspired robotics in the viewpoint of being life. Section 12.2 overviews the multiple memory systems of the brain in terms of conscious awareness. Section 12.3 describes robotic methodologies by using neural dynamics of oscillatory components to enable the system to provide online decision making in cooperation with involuntary motor controls, and discusses necessities for future work. Section 12.4 summarizes key concepts and future perspectives.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.