Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:26:34.634Z Has data issue: false hasContentIssue false

2 - Brain development in healthy children and adolescents: magnetic resonance imaging studies

Published online by Cambridge University Press:  04 August 2010

Jay N. Giedd
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Michael A. Rosenthal
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
A. Blythe Rose
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Jonathan D. Blumenthal
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Elizabeth Molloy
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Richard R. Dopp
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Liv S. Clasen
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Daniel J. Fridberg
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Nitin Gogtay
Affiliation:
Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Using Magnetic resonance imaging (MRI), the team at the Child Psychiatry Branch of the National Institute of Mental Health has been collecting brain MRI scans on healthy children and adolescents since 1989. As of 2003, over 300 scans from 150 healthy subjects are acquired. The data presented in this chapter is largely drawn from this cohort unless otherwise stated. MRI is adept at discerning gray matter, white matter, and fluid on brain images. These boundaries are used to define the size and shape of brain structures or regions. Characterization of normal brain development is imperative to assess the hypothesis that many of the most severe neuropsychiatric disorders of childhood onset are manifestations of deviations from that normative path. Sexual dimorphism in healthy brain development may lead to differential vulnerability, which would account for some of the clinical differences in childhood neuropsychiatric disorders.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlucchi, G. (1981). Interhemispheric asymmetries in visual discrimination: a neurophysiological hypothesis. Doc Opthal Proc Ser 30: 87–93Google Scholar
Bigelow, L. H., Nasrallah, H. A., Rauscher, F. P. (1983). Corpus callosum thickness in chronic schizophrenia. Br J Psychiatry 142: 284–287CrossRefGoogle ScholarPubMed
Blanes, T., McGuire, P. (1997). Heterogeneity within obsessive compulsive disorder: evidence for primary and neurodevelopmental subtypes. In Neurodevelopment and Adult Psychopathology, ed. M. S. Keshavan, R. Murray. Cambridge, UK: Cambridge University Press, pp. 206–216
Bogen, J. E., Bogen, G. M. (1969). The other side of the brain. 3, The corpus callosum and creativity. Bull Los Ang Neurol Soc 34: 191–220Google ScholarPubMed
Castellanos, F. X., Giedd, J. N., Eckburg, P.et al. (1994). Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. Am J Psychiatry 151: 1791–1796Google ScholarPubMed
Clark, A. S., MacLusky, N. J., Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey. Endocrinology 123: 932–940CrossRefGoogle ScholarPubMed
Cook, N. D. (1986). The Brain Code: Mechanisms of Information Transfer and the Role of the Corpus Callosum. London: Methuen
Dekaban, A. S., Sadowsky, D. (1978). Changes in brain weight during the span of human life: relation of brain weights to body heights and body weights. Ann Neur 4: 345–356CrossRefGoogle ScholarPubMed
Flaum, M., Swayze, V. W., O'Leary, D. S.et al. (1995). Brain morphology in schizophrenia: effects of diagnosis, laterality and gender. Am J Psychiatry 152: 704–714Google ScholarPubMed
Giedd, J. N., Castellanos, F. X., Casey, B. J.et al. (1994). Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. [See comments]Am J Psychiatry 151: 665–669Google Scholar
Giedd, J. N., Rumsey, J. M., Castellanos, F. X.et al. (1996). A quantitative MRI study of the corpus callosum in children and adolescents. Brain Res Dev Brain Res 91: 274–280CrossRefGoogle ScholarPubMed
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol Biol Psychiatry 21: 1185–1201CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O.et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2: 861–863CrossRefGoogle ScholarPubMed
Gould, E., Allan, M. D., McEwen, B. S. (1990). Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone. Brain Res 525: 327–329CrossRefGoogle ScholarPubMed
Hellige, J. B., Cox, J. P., Litvac, L. (1979). Information processing in the hemispheres: selective hemisphere activation and capacity limitations. J Exp Psychol Gen 108: 251–259CrossRefGoogle ScholarPubMed
Ho, K. C., Roessmann, U., Straumfjord, J. V., Monroe, G. (1980). Analysis of brain weight. I. Adult brain weight in relation to sex, age, and race. Arch Pathol Lab Med 104: 635–639Google Scholar
Hyde, T. M., Stacey, M. E., Coppola, R.et al. (1995). Cerebral morphometric abnormalities in Tourette's syndrome: a quantitative MRI study of monozygotic twins. Neurology 45: 1176–1182CrossRefGoogle ScholarPubMed
Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Arch Neurol 47: 919–926CrossRefGoogle ScholarPubMed
Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., Eliopulos, D. (1991). Corpus callosum morphology in attention deficit–hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 24: 141–146CrossRefGoogle ScholarPubMed
Innocenti, G. M., Manzoni, T., Spidalieri, G. (1974). Patterns of somesthetic messages transferred through the corpus callosum. Exp Brain Res 19: 447–466CrossRefGoogle ScholarPubMed
Jerison, H. J. (1991). Brain Size and the Evolution of Mind. New York: American Museum of Natural History
Jernigan, T. L., Trauner, D. A., Hesselink, J. R., Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain 114: 2037–2049CrossRefGoogle ScholarPubMed
Joseph, R. (1980). Awareness, the origin of thought, and the role of conscious self-deception in resistance and repression. Psychol Rep 46: 767–781CrossRefGoogle Scholar
Kappers, C. U. A., Huber, G. C., Crosby, C. C. (1936). The Comparative Anatomy of the Nervous System of Vertebrates including Man, Vol. 2. New York: MacMillanCrossRef
Lange, N., Giedd, J. N., Castellanos, F. X., Vaituzis, A. C., Rapoport, J. L. (1997). Variability of human brain structure size: ages 4 to 20. Psychiatry Res Neuroimaging 74: 1–12CrossRefGoogle Scholar
Levy, J. (1985). Interhemispheric collaboration: single mindedness in the asymmetric brain. In Hemisphere Function and Collaboration in the Child, ed. C. T. Best. New York: Academic Press, pp. 11–32
Levy, J., Trevarthen, C. (1981). Color-matching, color naming and color memory in split brain patients. Neuropsychology 19: 523–541CrossRefGoogle ScholarPubMed
Morse, J. K., Scheff, S. W., DeKosky, S. T. (1986). Gonadal steroids influence axonal sprouting in the hippocampal dentate gyrus: a sexually dimorphic response. Exp Neur 94: 649–658CrossRefGoogle Scholar
Murphy, D. G. M., DeCarli, C. D., Daly, E.et al. (1993). Effects of the X chromosome on female brain: a study of turner syndrome using quantitative magnetic resonance imaging. Lancet 342: 1197–1200CrossRefGoogle Scholar
Njiokiktjien, C. (1991). Pediatric Behavioral Neurology, Vol. 3 The Child's Corpus Callosum. Amsterdam: Suyi Publications
Parashos, I. A., Wilkinson, W. E., Coffey, C. E. (1995). Magnetic resonance imaging of the corpus callosum: predictors of size in normal adults. J Neuropsychiatry Clin Neurosci 7: 35–41Google ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K.et al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283: 1908–1911CrossRefGoogle ScholarPubMed
Peterson, B., Riddle, M. A., Cohen, D. J.et al. (1993). Reduced basal ganglia volumes in Tourette's syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology 43: 941–949CrossRefGoogle ScholarPubMed
Peterson, B. S., Leckman, J. F., Duncan, J. S., Wetzles, R., Riddle, M. A. (1994). Corpus callosum morphology from magnetic resonance images in Tourette's syndrome. Psychiatry Res Neuroimaging 55: 85–99CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D. H., Sullivan, et al. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51: 874–887CrossRefGoogle ScholarPubMed
Piven, J., Arndt, S., Bailey, J.et al. (1995). An MRI study of brain size in autism. Am J Psychiatry 152: 1145–1149Google ScholarPubMed
Rapoport, S. I. (1990). Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res Rev 15: 267–294CrossRefGoogle ScholarPubMed
Reiss, A. L., Lee, J., Freund, L. (1994). Neuroanatomy of fragile X syndrome: the temporal lobe. Neurology 44: 1317–1324CrossRefGoogle ScholarPubMed
Rosenthal, R.Bigelow, L. (1972). Quantitative brain measurements in chronic schizophrenia. Br J Psychiatry 121: 259–264CrossRefGoogle ScholarPubMed
Shanks, M. F., Rockel, A. J., Powel, T. P. S. (1975). The commissural fiber connections of the primary somatic sensory cortex. Brain Res 98: 166–171CrossRefGoogle Scholar
Sholl, S. A., Kim, K. L. (1989). Estrogen receptors in the rhesus monkey brain during fetal development. Dev Brain Res 50: 189–196CrossRefGoogle ScholarPubMed
Singer, H., Reiss, A. L., Brown, J. E.et al. (1993). Volumetric MRI changes in basal ganglia of children with Tourette's syndrome. Neurology 43: 950–956CrossRefGoogle ScholarPubMed
Sowell, E., Trauner, D. A., Gamst, A., Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 44: 4–16CrossRefGoogle ScholarPubMed
Spidalieri, G., Franchi, G., Guandalini, P. (1985). Somatic receptive-field properties of single fibers in the rostral portion of the corpus callosum in awake cats. Exp Brain Res 58: 75–81CrossRefGoogle Scholar
Steen, R. G., Ogg, R. J., Reddick, W. E., Kingsley, P. B. (1997). Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence. Am J Neuroradiol 18: 819–828Google ScholarPubMed
Swedo, S. E., Rapoport, J. L., Leonard, H., Lenane, M., Cheslow, D. (1989). Obsessive–compulsive disorder in children and adolescents. Clinical phenomenology of 70 consecutive cases. Arch Gen Psychiatry 46: 335–341CrossRefGoogle ScholarPubMed
Thompson, P., Giedd, J. N., Blanton, R. E.et al. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404: 190–192CrossRefGoogle ScholarPubMed
Tomasch, J. (1954). Size, distribution and number of fibers in the human corpus callosum. Anat Rec 119: 119–135CrossRefGoogle Scholar
Zaidel, D., Sperry, R. W. (1974). Memory impairment after commissurotomy in man. Brain 97: 263–272CrossRefGoogle ScholarPubMed
Zaidel, D., Sperry, R. W. (1977). Some long-term effects of cerebral commissurotomy in man. Neuropsychology 15: 193–204CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×