Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Basic aspects of neurodegeneration
- 1 Endogenous free radicals and antioxidants in the brain
- 2 Biological oxidants and therapeutic antioxidants
- 3 Mitochondria, metabolic inhibitors and neurodegeneration
- 4 Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases
- 5 Glutamate transporters
- 6 Calcium binding proteins in selective vulnerability of motor neurons
- 7 Apoptosis in neurodegenerative diseases
- 8 Neurotrophic factors
- 9 Protein misfolding and cellular defense mechanisms in neurodegenerative diseases
- 10 Neurodegenerative disease and the repair of oxidatively damaged DNA
- 11 Compounds acting on ion channels
- 12 The role of nitric oxide and PARP in neuronal cell death
- 13 Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
- 14 The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
- 15 Selected genetically engineered models relevant to human neurodegenerative disease
- 16 Toxic animal models
- 17 A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders
- 18 Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus
- Part II Neuroimaging in neurodegeneration
- Part III Therapeutic approaches in neurodegeneration
- Normal aging
- Part IV Alzheimer's disease
- Part VI Other Dementias
- Part VII Parkinson's and related movement disorders
- Part VIII Cerebellar degenerations
- Part IX Motor neuron diseases
- Part X Other neurodegenerative diseases
- Index
- References
14 - The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
from Part I - Basic aspects of neurodegeneration
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Basic aspects of neurodegeneration
- 1 Endogenous free radicals and antioxidants in the brain
- 2 Biological oxidants and therapeutic antioxidants
- 3 Mitochondria, metabolic inhibitors and neurodegeneration
- 4 Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases
- 5 Glutamate transporters
- 6 Calcium binding proteins in selective vulnerability of motor neurons
- 7 Apoptosis in neurodegenerative diseases
- 8 Neurotrophic factors
- 9 Protein misfolding and cellular defense mechanisms in neurodegenerative diseases
- 10 Neurodegenerative disease and the repair of oxidatively damaged DNA
- 11 Compounds acting on ion channels
- 12 The role of nitric oxide and PARP in neuronal cell death
- 13 Copper and zinc in Alzheimer's disease and amyotrophic lateral sclerosis
- 14 The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment
- 15 Selected genetically engineered models relevant to human neurodegenerative disease
- 16 Toxic animal models
- 17 A genetic outline of the pathways to cell death in Alzheimer's disease, Parkinson's disease, frontal dementias and related disorders
- 18 Neurophysiology of Parkinson's disease, levodopa-induced dyskinesias, dystonia, Huntington's disease and myoclonus
- Part II Neuroimaging in neurodegeneration
- Part III Therapeutic approaches in neurodegeneration
- Normal aging
- Part IV Alzheimer's disease
- Part VI Other Dementias
- Part VII Parkinson's and related movement disorders
- Part VIII Cerebellar degenerations
- Part IX Motor neuron diseases
- Part X Other neurodegenerative diseases
- Index
- References
Summary
Several epidemiological studies have demonstrated a significantly lower incidence of Alzheimer's disease in individuals who regularly consume non-steroidal anti-inflammatory drugs (NSAIDs) compared with the general population. Despite this evidence, therapeutic studies investigating NSAIDs, including inhibitors of cyclooxygenase (COX)-1 and COX-2 and steroids, do not support this hypothesis. This discrepancy might be due to the fact that the bulk of epidemiological evidence has examined the likely incidence of AD prior to the onset of clinical symptoms of the disease. This inconsistency has led to the hypothesis that NSAIDs may be optimally effective as a preventive therapy prior to the onset of clinical symptoms or in individuals at high risk for AD, such as cases with mild cognitive impairment. This review will discuss recent findings from experimental models of AD neuropathology describing novel mechanisms involved in the potential beneficial role of NSAIDs. It will then examine the importance of evidence for the potential role of inflammation in amyloidosis in the AD brain. The implications of this evidence will be considered in the context of the potential negative role of inflammation in the brain during amyloid vaccination therapy in AD trials. On the basis of this information, this review will attempt to formulate a possible scenario in which optimal NSAIDs might be tested in the most favorable clinical therapeutic conditions in order to determine whether NSAIDs can provide beneficial treatment for the clinical progression of AD dementia.
- Type
- Chapter
- Information
- Neurodegenerative DiseasesNeurobiology, Pathogenesis and Therapeutics, pp. 166 - 175Publisher: Cambridge University PressPrint publication year: 2005
References
- 1
- Cited by